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Abstract. The resistance of museum artefacts and statues under fast-dynamic excitations arising from explosions 
is investigated. The study takes root in the existing knowledge and theory of inverted pendulum structures subjected 
to earthquake loadings and extends them to non-symmetrical pulses due to blast waves. 
Analytical, closed-form solutions for the rocking response and the minimum stand-off distance that must be 
assured to avoid overturning are determined. 

Attention is focused on the response and vulnerability of existing museum artefacts. The analytical findings 
are used to assess the minimum perimeter around two emblematic statues for protecting them against deliberate 
explosions.  

Direct damage due to the high tensile stresses that develop through the material due to the impact of shock 
waves is further investigated. For the cases considered, material failure is found to prevail over rocking, hence 
overturning. The results draw attention on the criticality of preserving these art masterpieces against the explosive 
threat. The existing protective barriers around the statues of Michelangelo’s David and Aphrodite of Milos are 
found not to satisfactorily secure them against explosions as small as 5 kg. 

1 INTRODUCTION 

The problem of rocking attracts significant scientific research, mostly in the domain of earthquake engineering 
(construction of bridges, seismic isolation, masonry structures, historical monuments, etc.). We refer, for instance, 
to the seminal works of Omori [1, 2] and especially to the investigations of Housner [3], who was the first to study 
the response of a rigid, free-standing block subjected to constant and square pulse seismic (ground) accelerations. 
Extensive research has provided useful insights on the dynamic response of a rocking block, see e.g. [4–8].  

In the last decades, attention was focused on the (seismic) rocking response of ancient structures such as 
classical temples and museum artefacts with the aim of preserving such historical masterpieces through the design 
of seismic isolation devices, see e.g. [9–13].  
 

Herein we extend these studies, investigating the rocking dynamics of museum artefacts and statues under fast-
dynamic excitations arising from explosions. Our developments take root in the existing knowledge and theory of 
inverted pendulum structures subjected to earthquake loadings and extend them to non-symmetrical pulses 
provoked by blast waves. Assuming a simplified geometry of museum artefacts, we derive moment balance 
equations and overturning conditions are presented and used to determine the critical (minimum) stand-off distance 
between the source and the target to prevent toppling. This is accomplished by deriving analytical, closed-form 
solutions of the minimum stand-off distance that has to be provided to avoid toppling. Our model extends the 
current understanding of rocking due to blasts (cf. [14–16]) and leads to fundamental insights for design of 
protective devices. 

Fast-dynamic excitations arising from explosions present additional complexity if compared to seismic ones. 
First, the ultra-high rates involved: the characteristic time of a blast is of several milliseconds instead of ≈ 1 ÷ 10 
s for earthquakes. Second, wave propagation phenomena and fluid-structure interaction (e.g. diffraction, 
rarefaction, reflections, etc.) render the characterization of blast loading arduous. The effect of these phenomena 
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on our modelling assumptions is extensively discussed in [17], where the predictions of our analytical model are 
compared to detailed numerical analyses that consider the above-mentioned phenomena, a combined 
sliding/rocking behaviour, and the possibility of uplifting (flight mode). 

Engineering applications of the present study can be found in several domains. Of interest here is the 
preservation of un-anchored equipment and museum (slender) artefacts from overturning, e.g. statues. Such objects 
belong to the world cultural heritage and their protection has raised important issues throughout history. We refer 
e.g. to the lost and/or destroyed artefacts of Athena Parthenos, Colossus of Rhodes, the statue of Zeus at Olympia, 
and more recently the Buddhas statue of Bamiyan. The proposed analytical model can further be used for securing 
historical buildings made of monolithic columns from collapse (e.g. classical Greek and Roman temples [9, 18]). 

The paper is structured as follows. In Section 2 we present the main parameters that identify the blast loading and 
the model used. We investigate the rocking response and overturning condition for museum artefacts in Section 3. 
We consider two emblematic statues as case studies for the assessment of protective barriers against overturning 
due to explosions. In Section 4 the problem of direct damage due to development of important tensile stresses 
arising from the impinging blast waves is addressed with Finite Element simulations.  

2 STATEMENT OF THE PROBLEM AND MODELLING ASSUMPTIONS 

 The problem of a slender artefact freely standing on a horizontal base is studied considering the target as 
infinitely rigid. The artefact is modelled as an equivalent rigid rectangular block, with mass m, front surface S 
equal to the front surface of the artefact and moment of inertia around the pivot point O equal to Io (computed 
considering the real geometry of the statue). With reference to Figure 1, the centre of gravity is located at distance 
r from the pivot point, at a height hg = r cos ® from the ground and width b = r sin ®. The centroid of the front 
surface, impinged by the blast wave (simultaneously and uniformly), is at height hc from the ground (see Fig. 1).  

 

 

Figure 1. Configuration considered for the rocking problem of museum artefacts: an arbitrarily shaped rigid block 
(a) and a regular one (b) with rectangular base, resting on a horizontal plane with mass m (centre of gravity at hg), 
subjected to a uniform blast pressure applied to surface S (blue), with centroid at hc. 

The contact with the horizontal plane is assumed unilateral and punctual at point O (no contact moment). We 
further consider the angle of friction at the interface to be sufficiently large to prevent sliding. The pressure load 
due to the explosion is exclusively applied on the front surface S (incident surface, see Fig. 1) and the blast wave 
is assumed to act always horizontally (high rates involved) and to impinge all points of S at the same time 
(simultaneously) and with the same magnitude (uniformly). The fluid-structure interaction phenomena are 
neglected as well as the effects of induced ground shocks. The corroboration of the validity of the modelling 
assumptions can be found in [17], where it is shown that the minimum distance that has to be assured between the 
explosive source and the target, such that toppling is avoided, is in good agreement and on the safety side with the 
one determined by the full numerical model. 

#

a) b)
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2.1 Blast loading model 

Explosion produces a blast wave of high-pressure accompanying high-temperature and supersonic expansion of 
gases. The abrupt increase of the pressure carried by a blast wave can produce severe structural damage. When the 
primary shock meets a target, it generates on it the so-called reflected overpressure, Pr, which is the difference 
between the pressure determined by the explosion increased by the reflection at target’s surface and the ambient 
one, Po. Figure 2 shows the schematic time variation of Pr, which is determined by the arrival time of the shock 
wave, tA, the overpressure peak, Pro, the positive phase duration, to, negative phase duration, to-, and the 
underpressure peak, Pro-. These parameters are functions of the distance R and the explosive weight 
(conventionally expressed in TNT equivalent). Herein we consider only the positive phase of the blast wave (safety 
approach). 

The pressure acting on a target due to blast loading is the algebraic sum of the hydrostatic overpressure and the 
dynamic pressure CD q ∶= ½u|u|/2, with CD the drag coefficient (function of the target shape and Mach and 
Reynold numbers), ½ the density, and u the velocity of gas particles. 

 

Figure 3. Time evolution of overpressure (i.e. the pressure measured relatively to the atmospheric one) due to an 
explosion acting on a target. 

The simulation of a blast can be conducted by using different approaches [19, 20]. Herein we refer to empirical 
models based on experimental results available in the existing literature [21] which allow to determine the blast 
parameters and pressure loading from the knowledge of the trinitrotoluene (TNT) equivalent explosive weight, W, 
and the stand-off distance, R. The time evolution of the reflected pressure is modelled with the well-established 
modified Friedlander equation, 

  Pr(t) =  Pro  �1 - 
t

to
� (1 - H  [t  -  to]) exp �- d

t

to
�, (12) 

where H  [∙]  denotes the Heaviside (step) function, d is the exponential decay coefficient, and tA is taken as the 
origin of the time axis. The impulse ir associated to the positive phase reads 

  ir = ∫ Pr(t)  dt = �e-d + d - 1�
to

0

 Pro to

d
2  .  (13) 

The drag coefficient CD is assumed to be equal to 2 (corresponding to a rectangular target) for front surfaces of 
any shape. We use the empirical predictions of Pro [17], which are valid for rectangular objects. This assumption 
is on the safety side. For instance, a human body-like shaped target has a drag coefficient CD ≈ 0.97–1.43 [22]. 

3 ROCKING RESPONSE AND OVERTURNING DOMAIN 

3.1 Rocking response 

From the moment balance around the rocking pivot point O and the definition of the dimensionless inclination 

angle Á = µ/® and time ¿ = } t (with } = �mgr / Io ), the linearized equation of motion reads 

 Á̈ =  Á + Âp (1 + ±) - 1 ,  (1) 
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which is valid for small slenderness angles (® < 20°) and a unilateral rocking response (Á ≥ 0). We refer to [17] 
for the derivation of the above equation of motion. The angular acceleration is denoted by Á̈  and 

 
 ± = 

(hc - hg)

r
 , 

 

(2) 

 Â = 
S

mg

Pro

®
 , 

 

(3) 

 p =  �1 - 
¿

¿o
� (1 - H  [¿  -  ¿o]) exp �- d

¿

¿o
� . (4) 

Â (1 + ±) represents the normalized rocking moment, i.e., the ratio between the moment due to the blast load and 
the restoring moment due to gravity, p the normalized Friedlander time-history, and ¿o the ratio between the 
characteristic time of the load and the time parameter } characterizing the response of the rigid block. 

Assuming the block initially at rest (Á(0) = 0, Á̇(0) = 0), Eq. (1) admits a closed-form solution, whose 
expression in given in [17]. 
 
3.2 Overturning condition and domain 

Under unilateral excitations, namely the blast positive phase (see Fig. 2), overturning happens when the rocking 
angle µ > ®, i.e., when Á > 1. The overturning criterion is thus found by equating the total work done by the blast 
loading to the difference in potential energy between positions Á = 1 and Á = 0 (see Housner, [3]). 

For slender blocks and in terms of the dimensionless expressions presented above, the overturning condition 
reads 

 2IÂ (1 + ±) ≥ 1 ,  (5) 

with I = ∫ p Á̇  d¿ 
¿o

0
  (see [17]). Notice that the left-hand side term in inequality (5) represents the dimensionless 

overturning moment. The graphical representation of the dimensionless rocking and overturning moments as 
functions of the stand-off distance is presented in Figure 3 for a rectangular rocking block subjected to the 
explosion of 1 kg of TNT. The rocking moment, Â (1 + ±), expresses the condition for rocking initiation 
(Â (1 + ±) ≥ 1), while the overturning moment, 2IÂ (1 + ±), reveals the condition for overturning (5). 
 

 

Figure 3. Rocking initiation and overturning condition for a rectangular block with homogeneously distributed 
mass (i.e. hg = hc), density 2000 kg/m³, 2 metres high, and ® = 20° subjected to 1 kg of TNT at various stand-
off distances. The rocking moment, Â (1 + ±), expresses the condition for rocking initiation, i.e. Â (1 + ±) ≥ 1,  
while the overturning moment, 2IÂ (1 + ±), expresses the overturning condition, inequality (5).  

From inequality (5), the overturning domain, i.e., the minimum stand-off distance between the explosive source 
and the target required to avoid toppling, can be derived imposing 2IÂ (1 + ±) = 1. We present in Figure 4 the 
overturning domain for a rectangular block at varying of the explosive weight, W, and the slenderness angle, ®. 
The critical stand-off distance can be used as a decision-making tool in designing protective perimeters around 
valuable museum artefacts to avoid their loss due to overturning. 
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Figure 4. Contours of the critical stand-off distance (in metres) as function of the explosive weight, W, and the 
slenderness angle, ®, for a rectangular museum artefact with homogeneously distributed mass (i.e. hg = hc), 
density 2000 kg/m³, 2 metres high, and ® = 20°. 

3.3 Critical stand-off distance of museum artefacts  

The corroboration of the above presented overturning domain can be found in a previous study [17], where it is 
shown that the minimum distance that has to be assured between the explosive source and the target, such that 
toppling is avoided, is in good agreement and on the safety side with the one determined by the full numerical 
model. 

Herein we investigate the minimum perimeter that has to be assured to prevent the loss, due to overturning, of 
statues with high aesthetical and historical value in case of a deliberate blast. Two of most emblematic statues of 
the world cultural heritage are herein considered, see Figure 5. For both statues, the worst-case scenario is assumed: 
a blast wave with a direction such that the target rocking resistance is the smallest one (minimum slenderness angle
and moment of inertia). Table 1 shows the overturning domain of the artefacts for two quantity of explosive (TNT). 

Both statues are found to be safely protected with the existing protective barriers (perimeter approximately of 
1.50 m). The case of Michelangelo’s David is particularly interesting. Its large dimensions confer to the statue an 
excellent resistance to rocking, hence overturning. 

 

 

Figure 5. The two museum artefacts considered: Michelangelo’s David (Gallery of the Academy of Florence, 
Florence), left, and Aphrodite of Milos (Louvre Museum, Paris), right. The three-dimensional models are recovered 
from the platform Scan The World [23]. 
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Table 1: Rocking and overturning parameters for the considered artefacts and corresponding critical stand-off 
distances for 10 and 20 kg of TNT. 

4 RESISTANCE TO DIRECT DAMAGE DUE TO BLAST LOADING 

Whilst, for instance, Michelangelo’s David is safe against toppling due to blast loading, the marble statue may be 
directly damaged due to the development of important tensile stress. 

Once the shock wave impinges the front surface, a compressive wave propagates through the material, with 
amplitude approximately equal to the overpressure peak, Pro (cf. [24]). Tensile waves further stem from rarefaction 
phenomena at the free boundaries of the target and interact causing high fluctuations of stress and strain [24, 25, 
26]. The stress focalisation may give rise to tensile stresses higher than the material strength, causing hence direct 
damage of the artefact. Tensile stresses are more likely to damage the marble material with respect to compressive 
ones, as common geomaterials (such tuff, granite, mortar, etc.) usually display higher strength in compression. 

Nevertheless, the tensile strength, f
t
, of the material under high strain rates is higher than in quasi-static 

conditions [27]. Extensive experimental research showed that the loading rate influences the resistance of materials 
mainly due to the finite growth rate of micro-cracks [28, 29] and the material viscosity [30]. At increasing strain 
rates, an increase of the tensile strength, among other parameters, is observed, see e.g. [27, 31]. For geomaterials, 
the dynamic increase factor for tensile strength f

t
 usually varies between 1, under quasi-static conditions, and 7 in 

function of the involved strain rates, "̇, [31]. As far it concerns the museum statues, we refer to marble (namely 
Carrara marble), whose tensile strength under very low strain rates is f

t
 = 6.9 MPa and reaches a value of f

t
 = 50 

MPa for strain rates as high as "̇ = 18 s-1 [31]. 
 
As the material response is function of the particular geometry of the artefacts and the highly non-linear material 
behaviour, it is not possible to derive analytical expressions to assess the critical stand-off distance necessary to 
avoid direct damage due to blast loading. Each case requires ad-hoc investigations through detailed numerical 
analyses. To this purpose, we perform Finite Element simulations. 

For the two museum artefacts considered, during the short time period (≈ 10 ms) following the blast loading, 
the tensile strength dependency on strain rates "̇ is negligible as "̇ ≫ 18 s-1. We hence assume a constant tensile 
strength f

t
 = 50 MPa. The material constitutive law is assumed isotropic, linearly elastic until the maximum 

principal stress reaches the tensile strength. A subsequent tensile softening is considered in terms of the non-linear 
brittle cracking model implemented in ABAQUS commercial software [32-34]. In compression, the behaviour is 
assumed to be linear elastic due to the lower compression stresses involved and the high material strength.  

We consider Coulomb friction at the interface between the statue and the rigid base, with an angle of friction 
' = 35°, which is common for many geomaterials (concrete, marble, stone, etc.). A hard contact formulation is 
used, i.e., no penetration is allowed at the contact of the rocking block with the base [32]. Blast loading are applied 
with ConWep model [35] relying on the best-fit interpolations of the experimental results from Kingery and 
Bulmash [21]. 

Table 2 compares the critical stand-off distances to avoid overturning (according to the analytical model 
presented in Sect. 3) and direct damage (obtained through numerical Finite Element simulations) for the statues of 
Michelangelo’s David and Aphrodite of Milos. Figure 6 displays the time evolution of the maximum principal 
stress developed within the statue of Aphrodite of Milos and the subsequent material damage due to 10 kg of TNT 
at 2 metres from the target. The non-standard, fine geometry of the artefact gives rise to strong stress 
concentrations. At time t = 300 μs after the shock arrival, damage appears in the lower part of the body and 
propagates within. As the stress waves travel through the material, the reflection and localisation of stress waves 
at the level of the neck takes place and causes its breakage (t = 900 μs). Even if the statue is found to be safe 
against overturning, due to the interaction between the geometry and the material stress waves, the existing 
protective perimeter around Aphrodite of Milos, at Louvre Museum (Paris), is insufficient to the preservation 
against explosions as small as 5 kg (corresponding to a critical stand-off distance ≈ 1.7 m). Whilst the statue of 
the David is more resistance against overturning with respect to Aphrodite, its geometry and stress state under self-
weight render it more vulnerable to deliberate explosions (direct damage).  
 

Museum artefact m Io hg hc ® b S  Critical stand-off distance 

 [kg] [kg m² ×10³] [m] [m] [°] [m] [m²]                         [m] 

         W       [kg]        10 20 

Michelangelo’s David 5800 1.65×10³ 2.28 2.35 17.6 0.7 5.02  0.25 0.32 

Aphrodite of Milos 565 16.4 0.86 0.87 18.4 0.28 0.83  0.70 1.0 
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Table 2: Comparison of the critical stand-off distance to avoid overturning and direct damage for the statues of 
Michelangelo’s David and Aphrodite of Milos. 

 

Figure 6. Time evolution of the maximum principal stress (top) and material damage (bottom) for the statue of 
Aphrodite of Milos due to 10 kg of TNT at 2 metres from the target. Finite elements undergoing damage 
correspond to a unit damage variable. 

6 CONCLUDING REMARKS 

We investigated the resistance of museum artefacts, modelled as inverted pendulum structures, under fast-dynamic 
excitations arising from an explosion. First, by virtue of a simplified expression of blast actions and based on 
established empirical models, we derived the equations of motion for the rocking of museum artefacts. The 
overturning condition was then presented and used to derive the minimum distance (critical stand-off distance) 
that has to be assured between the explosive source and the target, such that toppling is avoided. The proposed 
analytical model was corroborated in a previous study [17] by detailed numerical simulations accounting for a 
combined rocking/sliding behaviour, the possibility of uplifting (flight mode), and the complex fluid-structure 
interaction phenomena. Second, we assessed the overturning domain of two of the most emblematic statues 
belonging to the world cultural heritage: Michelangelo’s David and Aphrodite of Milos.  

 

Museum artefact  Critical stand-off distance 
  [m] 
  overturning direct damage 

W    [kg]  10 20 10 20 

Michelangelo’s David  0.25 0.32 2.95 3.90 

Aphrodite of Milos  0.70 1.0 2.12 2.67 
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Finally, direct material damage due to the development of tensile stresses within the body of the targets impinged
by the shock wave was investigated. The highly non-linear material behaviour as well as the complex interaction 
between the artefact and the material stress waves render not viable a theoretical treatment of the problem of direct 
damage due to blast loading. Ad-hoc investigations were therefore presented and used to assess the critical strand-
off distance to avoid direct (material) damage for the statues of David and Aphrodite of Milos. For both cases, the 
non-standard geometry of the target gives rise to strong stress concentrations which render the structure more 
vulnerable to damage rather than overturning. 
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