
12th HSTAM International Congress on Mechanics 
Thessaloniki, Greece, 22 – 25 September 2019 

 

A DISCRETE ELEMENT METHOD APPROACH FOR THE PRESERVATION 
OF THE ARCHITECTURAL HERITAGE AGAINST EXPLOSIONS 

F. Masi1,2, I. Stefanou1, P. Vannucci3, and V. Maffi-Berthier 2 

1NAVIER 
UMR 8205, École des Ponts, IFSTTAR, CNRS, UPE 

Champs-sur-Marne, F-77420, France 
e-mail: filippo.masi@enpc.fr , ioannis.stefanou@enpc.fr 

 
2Ingérop Conseil et Ingénierie 

Rueil-Malmaison, F-92500, France 
e-mail: victor.maffi-berthier@ingerop.com  

 
3LMV 

UMR 8100, Université de Versailles et Saint-Quentin  
Versailles, F-78035, France 

e-mail: paolo.vannucci@uvsq.fr  

Keywords: Blast actions, Masonry structures, Discrete Element Method, Architectural heritage. 
 
Abstract. Most emblematic monumental and historical buildings are masonry structures, made of brick and stone. 
Assess their response and vulnerability against explosive threats is a crucial issue in the preservation of such 
architectural assets and their visitors. The investigation of the blast loading response of masonry structures 
requires a proper modelling approach of the material and the loads arising from an explosion. 
 Here we propose a Discrete Element Method approach to investigate the fast-dynamic response of planar 
masonry structures subjected to blast loading. The Discrete Element Method captures the detailed mechanical and 
geometrical characteristics of masonry as well as the inherent coupling between the in- and out-of-plane motions. 
Blast loads are applied through an external dynamic library, which accounts for the effect of surface rotation of 
masonry components due to the pressure load (incident angle effect). 
 The discrete model is validated through existing experimental tests. The numerical simulations are found to 
predict with high fidelity the dynamic response and failure of the specimens, corroborating our modelling 
assumptions. The proposed approach is central to understand the behaviour of masonry structures subjected to 
blast loading and the influence of the various micro-mechanical material parameters. 

1 INTRODUCTION 

In the present international context, there is a need for the scientific community and institutions to better assess 
the threat of explosions meant to destroy civil engineering structures. Emblematic historical and monumental 
buildings, which have been targeted repeatedly, are often made of brick and stone, for which the prediction of the 
response to blast loading is particularly challenging. These structures tend to be massive, providing a natural 
resistance to blast pressure, but also typically have very low tensile strength between bricks or stones, leaving their 
joints able to open, and rendering them susceptible to collapse.  

The investigation of the mechanical behaviour of masonry structures attracts significant scientific research, 
mostly focusing on the mechanical behaviour under quasi-static and seismic loads. In the last decade, increasing 
interest was shown in the response and potential damage of masonry structures due to explosive events, such as 
deliberate and/or accidental blasts and vented explosions from gas leaks, see e.g. [1-6]. 

Attention was focused on the response of planar masonry structures to blast loads. We refer here to the seminal 
work of Gabrielsen et al. [7] who first experimentally investigated the response to blast loading of full-scale un-
reinforced masonry walls with and without development of arching actions. Several experimental campaigns 
investigated the blast performance of one-way arching masonry walls [1-4, 8-10]. Keys and Clubley [2] 
investigated the debris distribution and failure pattern of masonry walls subjected to long duration blast loading.  
More recently, Michaloudis and Gebbeken [4] analysed the response of unreinforced masonry walls constrained 
to rigid supports subjected to far-field and contact explosions through experimental and numerical investigations.  

Several modelling strategies were developed to investigate the dynamic response of masonry structures to 
explosions. We refer herein to both meso- and macro-scale numerical approaches, see e.g. [4, 10-16].  

 
The Discrete Element Method (DEM) is herein proposed as an accurate and effective modelling strategy for 

masonry structures subjected to explosions. Blast loads are computed using an external dynamic library which 
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accounts for the effect of surface rotation of building blocks as well as the evolution in time of their relative 
distance with respect to the impinging blast wave. Through appropriate validation of the proposed approach with 
experimental data, we prove that DEM is a reliable tool in predicting the response of masonry structures and their 
failure to far-field explosions. In such scenarios, the mechanical behaviour of the masonry joints plays a leading 
role in the overall strength and failure of the structure. Failure within the body of masonry bricks does not occur 
or is usually negligible, as corroborated by experimental tests [1, 2, 4] as well as by theoretical investigations, see 
e.g. [17] where it is shown that failure of the building blocks is important only under high compression.  

We further investigate the accuracy of a rigid block model under quasi-static and dynamic conditions. Non-
deformable blocks may provide inaccurate predictions for the out-of-plane response due to an intrinsic 
overestimation of the flexural stiffness. 

 
The proposed modelling approach is central to investigate in detail the response and failure of masonry 

structures subjected to far-field explosions as well as to identify the governing micro-mechanical material 
parameters. It can be used to conceive appropriate and effective protective devises to help in the preservation of 
the architectural heritage. The discrete model can further be used to perform full-scale numerical tests focusing on 
the strength of the structure at varying of the geometry, material parameters, as well as the intensity of the blast 
loading. Ultimately, our numerical model, relying on a detailed description of the system, offers the possibility to 
conceive in-scale experiments through the definition of appropriate scaling laws. Notice that performing blast 
experiments either in reduced or in full scale presents many difficulties [18], due to the nature of the loading action 
(e.g. need of specialized personnel, risks, measuring devices, repeatability, uncertainties etc.) 
 

The paper is structured as follows. In Section 2 we present the Discrete Element model and the main 
assumptions of our modelling approach. We briefly describe in Section 3 the effects of explosions on targets and 
the model used to apply the loading on the masonry structure. We perform in Section 4 numerical tests of the 
response of a masonry wall subjected to far-field explosions, assuming (elastic) deformable masonry blocks. The 
results are compared and validated with existing experimental tests. In Section 5 we investigate the validity and 
accuracy of a rigid block model to predict the out-of-plane response of a masonry wall. 

2 DISCRETE ELEMENT METHOD AND MODELLING ASSUMPTIONS 

 The Discrete Element Method is used to investigate the dynamics of masonry structures subjected to blast 
loading. The model allows to directly access the various micro-mechanical parameters, such as the constitutive 
behaviour of the interfaces and bricks, as well as the geometry of the building blocks. Furthermore, a discrete 
approach allows to simulate the progressive failure of masonry and capture with increased fidelity the post-peak, 
softening, dynamic behaviour of a masonry structure with bricks undergoing large displacements and rotations.  

The DEM simulations are herein carried out by means of the 3DEC software [19]. A central finite differences 
scheme is used in this code for integrating in time the equations of motion of each block. This code provides the 
means to apply the conceptual model of a masonry structure as a system of blocks, either rigid or deformable. 
Block deformability is considered through internal discretization of blocks into finite differences. Herein 
deformable blocks are used to achieve a detailed description of the structural response. The validity of a rigid 
blocks modelling assumption is further investigated in Section 5. 
A soft-contact algorithm is used to model the interactions between neighbouring blocks through interfaces/joints.  

 
2.1 Elastic behaviour of the interfaces 

A Discrete Element (DE) model with deformable blocks consists of deformable units which are subdivided into a 
finite-difference mesh of triangular elements, interacting along zero-thickness joints. 

The elastic behaviour of the interfaces is defined through the following stress-displacement relationship [19] 

 
� 
tn
tt

 �  = � 
kn 0

0 kt
 � � 

un
ut

 �  or t = k   u ,  (1) 

where t and u are the vectors collecting the normal, tn , and tangential, tt , forces per joint’s unit area and the joint 
normal, un , and tangential, ut , displacement, respectively. The elastic stiffness matrix k collects the normal and 
tangential to the interface stiffnesses: kn and kt , respectively.  
Normal and tangential stiffnesses can be computed from the properties of the masonry components (bricks and 
joints), considering the expansion in dimension of the masonry blocks and the soft-contact assumption. The 
identification of the numerical values of the elastic parameters is obtained assuming a stack bond masonry and 
uniform stress distributions both in the block and mortar, see Figure 1. The joint normal stiffness kn is computed 
by requiring the analogy between a real masonry prism and the discrete element model, in terms of series of axial 
springs. The equivalent stiffness for the masonry prism in Figure 1 is 
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kn,eq
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       →       kn,eq = 
EbEm

Emhb + Ebhm
  (2) 

 
with Eb , Em the Young’s moduli of the brick and the joint, respectively, and hb , hm the height of the block and 
the joint (masonry prism). 

 

Figure 1. Scheme to determine joint normal stiffness. The value of kn is found by requiring the equivalence 
between the axial stiffness of the real masonry prism (left) and the one of the DEM with expanded blocks and zero-
thickness interfaces (right). 

 
The Young’s and shear moduli of deformable blocks, E*

b and G*
b, are modified to account for the expansion in 

dimensions (with respect to the real dimensions of the masonry bricks) 

 E*
b = Eb �1 + 

hm

hb
�   , G

*
b = Gb �1 + 

hm

hb
� , (3) 

where Gb is the shear modulus of the masonry bricks. Equating expression (2) with the equivalent stiffness of the 
DE model along the normal direction, i.e., kn,DE = (hb+hm) E

*
b⁄  , we recover the joint normal stiffness kn = Em hm⁄ , 

and similarly, along the tangential direction, the tangential stiffness is computed as kt = Gm hm⁄   . 

2.2 Plastic and softening behaviour of the interfaces 

In the absence of more detailed experimental data regarding the constitutive behaviour of masonry joints the 
Coulomb criterion seems to be a reasonable choice. Several experimental observations (e.g. [20-22]) justify its use 
up to moderate compression. Herein we assume an infinite compressive strength of the interfaces. Such hypothesis 
is verified a posteriori by monitoring the compressive stresses during each computation. 
The maximum shear (or tangential) force per joint’s unit area tt (in N/m²) is limited by the Coulomb failure surface: 

f
1
 =  tt    -   c -   tn tan'≤    0  (4) 

where c is the cohesion of the interface and ' the friction angle. Compression is here considered negative. In 
shear/tensional regime a tension cut-off is often used as shown in Figure 2. In other words, the maximum normal 
force per joint’s unit area tn (in N/m²) is limited by the tensile strength according to: 

 f
2
 =  tn   -     ft ≤    0  (5) 

where f
t
 is the tensile strength of the interface. The joint forces Ft and Fn are related to the corresponding 

displacements by Hooke’s law 

 Ft = Ajtt ,  Fn = Ajtn (6) 

where Aj is the joint’s area. The two inequalities (4, 5) define the elastic domain of a masonry interface. The 
evolution and contraction under combined shear and normal plastic deformation of the elastic domain can be 
considered in terms of the various micro-mechanisms related to progressive softening of the joint. According to 
experimental results on interfaces, a softening behaviour is observed as depicted in Figure 2. In this way cohesion, 
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maximum tensile strength, and friction and dilatancy angles can evolve from their initial values c   ; f
t
 ; ' ;  ª  to 

some smaller residual values cres ; ft,res ; 'res
 ;  ªres . All these values can be determined by typical experimental 

tests on interfaces. 

 

Figure 2. Initial and residual strength surfaces used for modelling joints behaviour. 

Regarding the plastic flow rule, this is given by the following potentials: 

 g
1
 =  tt    -        c   -   tn tanª (7) 

 g
2
 =  tn   -     ft (8) 

where ª is the dilatancy angle. If ª = ' we say that the plastic flow rule is associative (normality condition), 
otherwise (ª < ') the material obeys a non-associative plastic flow rule. In both cases, the following general 
relation between the rate of change of forces and the rate of change of total displacements stands 

 
t = kp   u , (9) 

with kp the plasticity matrix, 

 
 kp =  

kn

∙+ tan' tanª
 � 

tanª 1

tan' tanª tan' 
� , (10) 

where 

 ∙ =  
kn

kt
 , (11) 

t and u the vectors collecting the rate of change of the forces and of total displacement. 
 

2.3 Constitutive behaviour of deformable blocks 

An isotropic, elastic material behaviour is herein considered for the blocks. Infinite tensile and compressive 
strength are further assumed. This hypothesis may be strong in the case of relatively near-field explosions and 
especially in contact detonations, see e.g. [4]. Nevertheless, damage within the body of masonry bricks is generally 
negligible in far-field explosions, where the collapse of the masonry structure is governed by failure at the 
interfaces [1, 2, 4]. This is also corroborated by the fact that the tensile as well as the compressive strength are 
strain rate dependent. Extensive researches showed that at increasing loading rates the resistance of geomaterials, 
such as mortar, concrete, and marble, increases as well, mainly due to the finite growth rate of micro-cracks [23, 
24] and the viscosity of the material [25]. At increasing strain rates, an increase of the tensile strength among other 
parameters, is observed. The dynamic increase factor for tensile strength for geomaterials (such as mortar, tuff, 
granite, etc.) usually varies between 1 and approximately 7 in function of the involved strain rates, see e.g. [26, 
27]. 

In each computation, stresses as well as strain rates are monitored to verified that the related dynamic strength 
of the material is such that failure within blocks does not occur. 
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3 BLAST LOADS AND MODELLING 

Explosion produces a blast wave of high-pressure accompanying high-temperature and supersonic expansion of 
gases. The abrupt increase of the pressure carried by a blast wave can produce severe structural damage. When the 
primary shock meets a target, it generates on it the so-called reflected overpressure, Pr, which is the difference 
between the pressure determined by the explosion increased by the reflection at target’s surface and the ambient 
one, Po. Figure 3 shows the schematic time variation of Pr, which is determined by the arrival time of the shock 
wave, tA, the overpressure peak, Pro, the positive phase duration, to, negative phase duration, to-, and the 
underpressure peak, Pro-. These parameters are functions of the distance R and the explosive weight 
(conventionally expressed in TNT equivalent). 

The pressure acting on a target due to blast loading is the algebraic sum of the hydrostatic overpressure and the 
dynamic pressure CD q ∶= ½u|u|/2, with CD the drag coefficient (function of the target shape and Mach and 
Reynold numbers), ½ the density, and u the velocity of gas particles. 

The simulation of a blast can be conducted by using different approaches [28-30]. Herein we refer to empirical 
models based on experimental results available in the existing literature. 

 

Figure 3. Time evolution of overpressure (i.e. the pressure measured relatively to the atmospheric one) due to an 
explosion acting on a target. 

 

3.1 Blast model 

We model blast actions following the work of Hyde [31] with the empirical model ConWep, which relies on the 
best-ft interpolations of the experimental results from Kingery and Bulmash [32]. The interpolations allow to 
determine the blast parameters and pressure loading from the knowledge of the trinitrotoluene (TNT) equivalent 
explosive weight, W, and the stand-off distance, R. The time evolution of the reflected pressure is modelled with 
the well-established modified Friedlander equation, 

  Pr(t) =  Pro �1 -  
t

to
�   exp �-d

t

to
� , (12) 

where d is the exponential decay coefficient. The impulse associated to the positive, ir+, and the negative phase, 
ir-, reads 

  ir+  = ∫ Pr(t)  dt = �e-d + d -1�
to

0

 Pro to

d
2  , (13) 

   
 ir-  = ∫ Pr(t)  dt =

∞

to

 Pro to

d
2  e-d , (14) 

 

respectively. Equation 16 allows to determine the exponential decay coefficient, d, by equating it with the best-fit 
interpolation of ir+ from experiments [32]. 
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4 COMPARISON WITH EXPERIMENTAL TESTS 

The proposed numerical model is herein compared and validated with existing experimental tests. Among the 
experiments available in the literature, we select one of the most well-documented [4]. Notice that performing 
blast experiments either in reduced or in full scale presents many difficulties, due to the nature of the loading action 
which may result in large uncertainties of the obtained results.  

 
Michaloudis and Gebbeken [4] analyse the response of unreinforced masonry walls subjected to far-field and 
contact explosions through experimental and numerical investigations. Among four tests, two involve masonry 
walls subjected to the explosion of W1 = 810 kg and W2 = 1150 kg of TNT at R = 37 m from the targets. Due to 
the large stand-off distance, the blast wave impinges almost uniformly and instantaneously the target. However, 
no information is given concerning the evolution of the blast pressure in the experimental tests. 
The brickwork consists of a running bond with bricks of nominal dimensions a × b × w = 80 × 240 × 120 mm, 
see Figure 4. The boundaries of the walls are constrained, through mortar interfaces, to stiff fixed supports. 

In Test 1 (W1 = 810 kg, R = 37 m), the observed maximum outward and inward deflection at the centre of the 
wall are 77 mm and 37 mm, respectively. In Test 2 (W2 = 1150 kg, R = 37 m), a breach at the centre of the wall 
originates mostly only due to the damage of the joints. Failure within the body of individual bricks is not observed 
or is negligible [4]. The maximum dimensions of the breach are equal to 4 bricks along the length of the wall and 
to 13 bricks along the height.  

 

Figure 4. Geometrical model for test 1 and 2 in [4]. The masonry wall has thickness w = 120 mm and coursing 
consisting of a running brick bond. Bricks have nominal size a × b ×  w  =  80 × 240 × 120 mm. 

In the numerical DE model, a constant thickness of the mortar hm = 10 mm is assumed in the lack of more 
detailed information for the walls. Table 1 presents the numerical material parameters which have been selected 
from the literature, see e.g. [17, 32, 33] Superscripts h and b refers to head and bed joints, respectively. Subscript 
res identifies the residual (softening) value of the parameters, when differ from the initial ones (see Fig. 2).  
In the lack of information about the boundary conditions acting on the structure, the wall is considered simply
supported at its four extremities, as complete rotational restraint or freedom may be difficult to achieve in practice. 
Blast loads are computed and applied with the dynamic library presented in Section 3. 
 

Convergence analyses for contact and finite difference discretization are performed with the same criterion 
used in [34]. Two different loads are applied in two stages. First, a gravity load is applied, and the system is left to 
reach equilibrium. Second, increasing out-of-plane forces, proportional to the block mass, are applied to each 
block, up to wall failure. Due to the inherent, dynamic character of most DEM codes, including 3DEC, care was 
taken in order to assure quasi-static conditions until failure. The loads are applied adequately slow in order to 
assure a small ratio of the kinetic energy over the total energy of the system. 
As far it concerns the specific DEM code used herein, 3DEC, the number of contact points situated across the wall 
thickness has a direct impact on the model response. This is especially important for out-of-plane loads as the one 
resulting from an explosion. From the convergence analyses, we find that at least 10 contact points are required to 
accurately modelling the out-of-plane deflection of the wall under study. The finite difference mesh for deformable 
blocks consists of tetrahedra with average characteristic length equal to 30 mm. 

As follows, the numerical simulations consist of two stages. A gravity load is first applied assuming a linear 
elastic behaviour, then, once the system has reached the equilibrium, blast loads are applied. In order to model the 
fast-dynamic response of the structure, no mechanical damping formulation is used. 

l w

h

a

b
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4.1 Test 1 

Table 2 shows the results obtained with the DEM model for Test 1 (W1 = 810 kg, R = 37 m) and compare them 
with the test data and the numerical computations presented in [4], which rely on similar modelling assumptions. 
The agreement of the results of the proposed model with the observed deflections is remarkably good (also 
compared to the numerical results in [4]). The maximum outward and inward displacements deviate from the 
experimentally observed one by 1.5 % and 3.2 %, respectively.  
We present in Figure 5 the evolution in time of the numerically measured deflection at the centre of the wall. In 
the free-oscillating response, the system gradually dissipate energy as a result of the slippage along interfaces, 
until it reaches an equilibrium. The centre of the wall displays a permanent deflection of approximately 7.1 mm 
along the outward direction. 

 
 
 
 

 

 

Table 1: Material parameters used in the numerical simulations with deformable DE. 

The assumption of infinite strength of the blocks in compression/tension and of the interfaces in compression is 
verified a posteriori. In both cases (blocks and interfaces), stresses are found to be 60 % lower than the 
corresponding material strength. 

 
 

 

 

Table 2: Comparison of the maximum outward and inward deflection at the centre of the wall for Test 1 (W1 = 810 
kg, R = 37 m) between the experimental values and the numerical predictions using deformable blocks (DEM) 
and the values obtained in [4]. 

 

Figure 5. Evolution of the deflection at the centre of the wall for Test 1 (W1 = 810 kg, R = 37 m) computed by the 
proposed DE model and from the computations in [4]. 

4.2 Test 2 

We present in Figure 6 the response of the wall from the numerical DEM simulations of Test 2 (W2 = 1150 kg, 
R = 37 m). The out-of-plane dynamic response and the consequent formation of the breach can be clearly 
observed. 

Michaloudis and

Gebbeken, 2019

DEM

Blocks properties  Joint properties 

Eb
*  (MPa)  5220  kn (GPa/m)  50.0 c (kPa) 500 ' (°) 30 

Gb
* (MPa)  2170  kt (GPa/m)  20.83 cres (kPa) 0 Ã (°) 0 

density (kg/m³)  2470      f
t
 (kPa) 100    

         f
res

 (kPa) 0    

Maximum deflection Experiment Numerical predictions Relative error 

   DEM from [4]  DEM from [4] 

Outward (mm)  77.0 78.2 56.3  1.5 % 26.8 % 

Inward (mm)  37.0 38.2 13.4  3.2 % 63.7 % 
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Table 3 compares the dimensions of the breach from the experimental evidence and the numerical results. In Figure 
7, we compare the final state of the masonry wall with a representative scheme obtained from the test results, see 
[4]. The DE model is found to well captures the form of failure, as well as the extension in height of the breach. 
However, less bricks are involved along the width direction. The number of bricks that travel from the wall is 22, 
while in the experiment is approximately equal to 40. The slight difference may be due to the complex fluid-
structure interaction phenomena that take place, in the reality, as the breach originates. The blast pressure, acting 
continuously on the openings, may be the cause of a larger breach in the width, i.e., along the direction where the 
masonry brick are more likely to rotate. Furthermore, it is worth stressing that, in the test, some bricks involved in 
the breach, even if few in number, undergo damage, which is not considered in our model.  
 

As for test 1, the assumptions of infinite compression strength of blocks and infnite tensile strength of blocks 
and interfaces are a posteriori verifed. The compression stresses are both in the masonry bricks and the interfaces 
below the material strength [27]. Tensile stresses exceed in some bricks th the material strength. Nevertheless, the 
enhancement in tensile strength due to high loading rates requires to be accounted for [26, 27]. The numerically 
measured strain rates within discrete elements are approximately 5−10 s-1, which correspond to a dynamic tensile 
strength of  approximately 4.5 − 6 MPa [26, 27]. Only some bricks involved in the formation of the breach are 
subjected to tensile stresses as high as 5 MPa. 

 

Figure 6. Response of the DE model for Test 2 (W2 = 1150 kg, R = 37 m), a-e), and final state of the masonry 
wall, f). 

 

 

 

 
 
Table 3: Comparison of the dimensions of the breach for Test 2 (W2 = 1150 kg, R = 37 m) experimentally 
observed and from the numerical predictions using deformable blocks (DEM) and the values obtained in [4]. 

a) b)

d) e)

c)

f)

Breach Experimental    Numerical predictions 

    DEM from [4] 

Dimensions  13×4  14×2 14×3 

No. of involved bricks  40  22 30 
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Figure 7. Comparison between the numerical DEM results (right) and the experiment (left) for Test 2 (W2 = 1150 
kg, R = 37 m). The experimental breach extension is schematically represented by the black dashed line. 

The proposed DE model shows a good agreement with the tests both for the dynamic response (Test 1) and the 
form of the failure (Test 2). This is a key aspect that is necessary to consider in every numerical strategy and 
approach which may be used to investigate the response and failure modes of masonry structures, and in 
particularly when the effects of blast loading are considered. A correct evaluation of the formation of breaches and 
weak planes may allow, through further investigations, the design of effective protections. 
 

4.3 Effects of the (non-)associativity of the sliding behaviour of masonry joints 

In the above calculations, a non-dilatant sliding behaviour was assumed for the interfaces, and namely Ã = 0°, as 
usually displayed by masonry joints, see e.g. [21]. We investigate herein the effect of an associative behaviour of 
the interfaces, i.e. when Ã = ' = 35°, on the response of the wall for both tests (1 and 2). All material parameters, 
except dilatancy, are kept the same as in Table 1. 
Figure 8 displays the time evolution of the deflection at the centre of the wall for dilatant and non-dilatant joints. 
The associative case shows reduced out-of-plane response and increased strength, see also [35].  

 

Figure 8. Influence of the dilatant behaviour of masonry joints in terms of the deflection at the centre of the wall 
for Test 1 (W1 = 810 kg, R = 37 m), left, and Test 2 (W2 = 1150 kg, R = 37 m), right. 

 
In Test 1, the maximum deflection is 22.9 mm, namely 3.4 times smaller the one obtained with Ã = 0° (i.e. 78.2 
mm). The maximum and minimum principal stress within masonry bricks are respectively 4 and 15 times larger 
than the values obtained with zero dilatancy. In Test 2, associativity of the interfaces results in a structure able to 
withstand the blast loading of 1150 kg of TNT. In this case, the maximum deflection is 80.5 mm, which is 
comparable to the results obtained with a non-dilatant behaviour, but under an explosive charge 340 kg smaller, 
i.e. 810 kg (Test 1). 

experiment DEM

Test 1 Test 2
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5 IS A RIGID BLOCKS ASSUMPTION APPROPRIATE TO MODEL THE OUT-OF-PLANE 
RESPONSE? 

Once the DE model has been validated with existing experimental results involving explosions, we investigate the 
simplified modelling assumption of infinitely rigid blocks which is often preferred in the literature, see e.g. [35-
37], for its reduced computational cost with respect to the more detailed model with deformable blocks. A rigid 
blocks assumption is usually reasonable under relatively low compressive loads, where the deformation is 
principally concentrated at the interfaces [17]. Moreover, from an energetic approach, the assumption of rigid 
blocks is supposed to provide safe estimations (lower bound) of the overall strength. Nevertheless, masonry 
structures subjected to out-of-plane loading, as it is the case with the experiments herein considered [4] and as 
frequently occurs with explosive loads, the rigid blocks assumption can give unsatisfactory results, see e.g. [15]. 

Notice that several contact points through the thickness of the masonry structure undergoing out-of-plane 
displacement are required both with rigid and deformable blocks formulations, for more we refer to [35, 38, 39]. 
However, in a rigid block model, the stress distribution at the interfaces follows a linear diagram, as the faces 
remain planar, thus an accurate discretization of contacts is crucial. For instance, it has been proved that in the 
frame of the DEM code herein used, 3DEC, at least 3 contact points along the thickness are required to obtain an 
accurate representation of the bending stiffness [39]. 

With rigid blocks, the normal and tangential stiffnesses of the interfaces are appropriately modified with respect 
to the expressions previously derived. In this case, the stiffness of the entire system is reduced to the stiffness of 
the zero-thickness interfaces, kn , and namely 

 kn = 
EbEm

Emhb + Ebhm
  (15) 

A similar expression can be derived for joint tangential stiffness kt: 

 kt = 
GbGm

Gmhb + Gbhm
  (16) 

with Gb and Gm the shear moduli of the masonry bricks and the mortar, respectively. The material parameters that 
define the plasticity behaviour and the corresponding softening remained unchanged, see Sect. 2. We present in 
Table 4 the material parameters used in the numerical DE model, derived from those given in Table 1 (for 
deformable DE) and considering the non-deformability of the blocks, see Eq.s (15) and (16). The discretization of 
the contact interfaces is investigated as presented in Section 4. From the convergence analyses, a discretization 
consisting of 20 contact points along the wall thickness is selected. Boundary conditions are kept the same as for 
the deformable DE. 

As follows, we investigate the effects of the non-deformability of blocks in the numerical DE model. This is first 
accomplished in quasi-static conditions, applying a constant out-of-plane pressure to a localized region of the
structure. Second, the dynamic response to blast loading is studied by numerical simulations of tests 1 and 2. 
  
 
 
 
 
 
 

 

Table 4: Material parameters used in the numerical simulations with rigid DE. Superscripts b and h  refer to bed 
and head joints, respectively. The joints stiffnesses are differentiated along the two directions in order to consider 
the different height of masonry bricks, see Eq.s (15) and (16). 

Blocks properties  Joint properties 

density (kg/m³)  2470  kn
b  (GPa/m)  29.4 c (kPa) 500 ' (°) 30 

     kt
b (Gpa/m)  12.3 cres (kPa) 0 Ã (°) 0 

     kn
h (Gpa/m)  15.2 f

t
 (kPa) 100    

     kt
h (Gpa/m)  6.3 f

res
 (kPa) 0    
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5.1 Response under quasi-static loading 

A constant uniform pressure, P = 100 kPa, is applied to a centred region of the wall, 7 courses high and 3 1
2
 wide. 

We assume a linear elastic behaviour of the interfaces. We present in Figure 8 the deformed shaped obtained with 
rigid DE and deformable ones. Table 5 compares the strain energies and maximum deflection obtained with the 
two models. Rigid blocks are found to underestimate the overall out-of-plane deflection with a maximum 
displacement equal to 1.55 mm with respect to the one predicted with deformable blocks, i.e., 2.26 mm. The reason 
lies on an intrinsic rotational locking (term we select in analogy with the well-known shear locking phenomenon 
observed in Finite Element Method formulations). The rotational locking happens independently from the fineness 
of the contact discretization, as the rigid block model consists of 20 contact points along the wall thickness. This 
is clearly shown in Figure 9 by the different slopes at the boundaries (x = ±1.2 m and y = ±1.24 m) for rigid and 
deformable DE.  

Referring to Table 5, we notice that the overall (material) strain energy, blocks plus interfaces, is almost equal for 
both models, however, the contributions of the joints strain energy highly differ. In particular, the compressive and 
tensile strain energies with rigid DE are found to be approximately two times larger than with deformable blocks. 
This is a direct consequence of the inadequacy of a rigid body behaviour for the case where relatively high 
compressive forces develop. In the flexural response of the wall, the (deformable) blocks can deform significantly, 
phenomenon that is not capture by a rigid body model. Moreover, it should be noticed that in the specific DEM 
code used herein, the modelling assumption of interfaces represented by only two elastic parameters, namely 
normal and tangential stiffnesses, may cause the enhancement of the observed rotational locking with rigid blocks. 

 

Figure 9. Comparison between rigid and deformable block models in terms of deflection along vertical (y axis) 
direction (left) and horizontal (x axis) direction (center). The curves are obtained by interpolation of the out-of-
plane displacement of the centroid of blocks (marks). The constant and uniform pressure load is applied to the 
region highlighted in gray (right). 

Table 5: Comparison of the results from the models with rigid and deformable blocks under quasi-static conditions. 
Material strain energy refers to the algebraic sum of the joints and blocks strain energies. 

5.2 Response under fast-dynamic excitations 

The dynamic response of the same model used in Section 4 and derived from the experimental tests in [4] is herein 
investigated using the hypothesis of infinitely rigid blocks. 

 
We compare in Table 5 the numerical predictions for Test 1 (W1 = 810 kg, R = 37 m) using rigid DE with the 

deformable blocks model. The rigid DE model is found to underestimate the outward deflection by 37.1 % the 
experimentally measured value. A rather good agreement is found instead for the inward deflection. 
We present in Figure 10 the time evolution of the out-of-plane displacement at the centre of the structure as 
computed with both DE models. It is worth noticing the difference of the mean value of the free-oscillating 

y

x

P= 100 kPa

 Maximum Material strain Blocks strain Joints strain energy 

 deflection energy  energy shear compressive  tensile  total 

 (mm) (J)  (J) (J) (J)  (J)  (J) 

deformable DE 2.26 24.0  6.41 10.4 3.5  3.6  18.0 

rigid DE 1.55 23.0  0.0 9.0 6.9  7.0  23.0 

rigid
deformable�  DE  71.9 % 96 %  0 % 86 % 197 %  194 %  127 % 
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response. Deformable blocks display a permanent deflection of approximately 7.1 mm in the outward direction. 
The rigid body model, instead, oscillates around a mean value equal to zero. The reason lies again on the rotational 
locking that a rigid DE description presents. The underestimated out-of-plane response results in a lesser amount 
of plastic energy dissipation at the interfaces. 
 

 

 

 

Table 6: Comparison of the maximum outward and inward deflection at the centre of the wall for Test 1 (W1 = 810 
kg, R = 37 m) between the rigid and deformable block models and the experimental test.  

 

Figure 10. Evolution of the deflection at the center of the wall obtained from the numerical simulations with rigid 
and deformable DE for Test 1 (W1 = 810 kg, R = 37 m).  

In the case of Test 2 (W2 = 1150 kg, R = 37 m), the rigid body model overall predicts the dimensions of 
the breach with good agreement with respect to the test results, see Figure 11. In particular, the width (4 courses 
of bricks) is accurately predicted by the numerical simulations, while the extension in height is overestimated, see 
Table 7. In this case, still due to the observed rotational locking, the rigid block model is found to overestimate the 
breach dimension, see Fig. 11. 

 

Figure 11. Comparison between the numerical results of the rigid and deformable block models for Test 2 
(W2 = 1150 kg, R = 37 m). The experimental breach extension is schematically represented by the dashed black 
line. 

Maximum deflection Experimental Numerical predictions Relative error 

   rigid DE deformable DE  rigid DE deformable DE 

Outward (mm)  77.0 48.4 78.2   37.1 % 1.5 % 

Inward (mm)  37.0 39.2 38.2  5.6 % 3.2 % 
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Table 3: Dimensions of the breach for Test 2 (W2 = 1150 kg, R = 37 m). Comparison between the observed values 
and the numerical predictions using rigid and deformable blocks (DE). 

6 CONCLUDING REMARKS 

We investigated the dynamic response and failure of masonry structures subjected to blast loads. The Discrete 
Element Method (DEM) was herein proposed as an accurate and effective modelling strategy as it captures the 
progressive failure and response of a masonry structure with bricks undergoing large displacements and rotations. 
The proposed model relies on simplifying assumptions as it considers elastic deformable blocks and the non-linear 
material response as being limited to the mortar interfaces. Indeed, the mechanical behaviour of the joints plays a 
leading role in the overall strength and failure of the masonry structure under far-field explosions, while failure 
within the body of masonry bricks does not occur or is usually negligible [1, 2, 4, 17]. 

The accuracy of the DEM model and corresponding modelling assumptions were investigated and validated 
through comparisons with existing, well-documented experimental tests [4]. We proved that our numerical model 
can predict with high fidelity the dynamic response and failure under far-field explosions of masonry structures.  

 
Once the numerical model was validated, it was used to assess the accuracy of a rigid block model in predicting 
the out-of-plane response under quasi-static and fast-dynamic conditions. The hypothesis of infinitely rigid blocks 
was found to overestimate the flexural stiffness of the system. As already discussed in [35, 38, 39], the contact 
discretization of the (rigid) Discrete Element (DE) model is a critical issue and has a direct impact on the model 
response. Nevertheless, the additional investigations we presented showed that, even in the case of a fine 
discretization of contacts, a rigid DE model displays an intrinsic rotational locking between adjacent blocks. This 
may result in a rather significant underestimation of the out-of-plane displacement of the structure, which was 
found to be around 70 % of the actual one (from experimental tests and a deformable block model) for the cases 
herein considered. 

It is worth noticing however that a rigid block model has a reduced computational cost with respect to the more 
detailed description offered by deformable DE. In the simulations herein performed, the computing time for rigid 
blocks was approximately 50-60 % faster than with deformable ones. 

Differently from the static and dynamic out-of-plane response, we found that the rigid block model gives 
sufficiently accurate predictions for the failure (strength) of the masonry structure subjected to blast loads. 
 

The results obtained in this paper can be useful for improving the understanding on the behaviour of masonry 
structures under out-of-plane deformations and in particularly under blast loads. Moreover, the proposed model 
can be used to perform reliable numerical tests of those systems for which the experimental set-up may be arduous 
and complex due to the fluid-structure interaction blast phenomena as well as the non-standard geometry of studied 
masonry structures [40], e.g. arches, vaults, domes, etc. This is a central point in the preservation of our 
architectural heritage against explosions as the numerical predictions of the failure modes can be used to design 
appropriate and effective protective devices.  The proposed Discrete Element Method approach can be also a useful 
tool in investigating the response and strength of large masonry structures to blast loading with numerical methods 
based on continuum mechanics (upscaling/homogenization).  
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