
2

Introduction to regression
methods

Filippo Masi1
1Sydney Centre in Geomechanics and Mining Materials, School of Civil

Engineering, The University of Sydney, Australia

Regression is one of the fundamental pillars of supervised Machine Learning.
In this Chapter we uncover the essential concepts in regression analysis and
methods, by providing (hands-on) practical examples, designed for graduate
students and researchers seeking to gain a solid understanding.
In particular, we first delve into linear regression methods, exploring both
closed-form solutions and the general optimization framework provided by the
gradient descent. Then, we introduce the necessary pre- and post-processing
steps for building and testing models: feature scaling, hold-out and cross-
validation.
Moving on, we focus on nonlinear regression methods, and, in particular, poly-
nomial regression. Through extensive examples, we then demonstrate the bene-
fits associated with regularization techniques (LASSO, Ridge, Elastic Net) and
the possibility of constructing interpretable and parsimonious models.
Lastly, we introduce Bayesian approaches with focus on linear and Gaussian
process regression. The advantages and drawbacks of the latter are compared
with ordinary regression methods.

Machine Learning in Geomechanics, vol.I,
coordinated by Filippo Masi. © ISTE Editions 2019.

2.1. Introduction

Regression is a statistical technique used to explore and quantify the rela-
tionship between dependent variables (often called outcomes) and independent
variables (often called predictors). In other words, regression involves fitting a
model to some data, under some error function. Two distinct purposes char-
acterize regression. The first one, and the primary, is to identify a model that
can be used for predictions and forecasting. While, the second is to infer causal
relationships between independent and dependent variables, under certain cir-
cumstances.

To grasp the main core of regression, consider a scenario where we seek
to understand the influence of relative density and effective confining pressure
on the shear strength and critical state behavior of a sand sample. Figure
2.1(a) presents 25 drained monotonic triaxial compression tests of Karlsruhe
fine sand with different initial relative densities ID0 and effective confining
pressures (Wichtmann and Triantafyllidis 2016). In this framework, regression
allows us to identify the intrinsic relationship between independent variables
x (that is, relative density and effective pressure) and a dependent variable y
(shear strength or critical state line), by assuming

y = fθ(x) + ϵ [2.1]

where fθ represents a function, with θ denoting its parameters (unknown), and
ϵ is an error term.1 With this objective in mind, we continue by formulating
an objective function that measures the difference between the predictions of
the model [2.1] and the values of the dependent variable. Via the minimization
of the latter, we can determine an optimal fit and thus identify the parameters
θ. In so doing, we obtain two models, fθ(x), able to generate predictions of
the failure envelope and critical state, as depicted in Figure 2.1(b-c). This is
the core process of regression and enables us to uncover relationships between
variables (data), make predictions, and gain insights from data.

This Chapter provides the tools necessary for carrying such analyses by
means of a comprehensive introduction to regression methods, using a “hands-
on approach” – that is, providing essential theoretical aspects and prioritizing
understanding through concrete examples. After studying this Chapter, we
hope that the reader will be able to:

1. The error term ϵ is an irreducible source of error. For instance, it may arise when-
ever there exist variables other than x – and independent of x – that have some not
negligible effect on the dependent variable y.

38

(a)

(c)(b)

Figure 2.1: Drained monotonic triaxial compression tests of Karlsruhe fine sand with
different initial relative densities ID0 and effective confining pressures (Wichtmann and
Triantafyllidis 2016) (a). Nonlinear regression of the failure envelope – locus of peak devi-
atoric stress – (b) and critical state line (c) using a basis of polynomial and trigonometric
functions.

1) Understand the fundamental notions related to regression methods and
gradient descent;

2) Solve a regression problem and select the best (class of) method(s) de-
pending on the particular task (linear, nonlinear, regularized, or Bayesian re-
gression);

3) Understand the importance of validating and testing a regression model
(and in general any Machine Learning model) and how to do so;

4) Grasp the importance of regularization techniques to uncover parsimo-
nious and simple models from data sets;

5) And understand the benefits and drawbacks of Bayesian approaches as
compared to ordinary regression methods.

All codes used in this Chapter are available on ALERT Geomaterials GitHub
(repository github.com/alert-geomaterials/2023-doctoral-school).

39

As it follows, scalar values and functions are represented in lowercase italic
font, while lowercase bold font denotes vectors and uppercase bold font denotes
matrices.

2.2. Linear regression

In linear regression (Mandel 1982), the idea is to select a linear function fθ(·),
in equation [2.1], whose parameters θ are identified to fit data by means of the
minimization of some error metric between the predictions, i.e., the outputs of
the function, and the dependent variables. As we will see, linear regression can
be formulated as a simple solution of a linear system.

To fix the ideas, let us start by considering a training data set, with n data
points or snapshots, composed of p dependent variables Y and m independent
variables X

Y ≡

y(1) y(2) · · · y(n)

 , X ≡

x(1) x(2) · · · x(n)

 , [2.2]

where y(k) and x(k) are the vectors collecting the p dependent variables and
the m independent variables, respectively, at the k-th snapshot of the data set.
In the following, we will consider for simplicity one-dimensional dependent
variables, i.e., p = 1, and we will refer to the vector collecting the snapshots of
the dependent variable as y. However the entire framework developed herein
can be easily formulated in higher dimensions.

To find a best fit line through the training data points, we thus assume a
linear model of the form

ŷ = θ0 + θ1x1 + θ2x2 + · · · + θmxm, [2.3]

where ŷ is the value predicted by the model, xi is the i-th independent variable
value, and θi is the i-th model parameter – including the bias term, θ0, and
the model weights, θ1, θ2, · · · , θm. The above equation can be formulated more
concisely as

ŷ = fθ (x) ≡ θTx∗, [2.4]

where θ =
�
θ0, θ1, θ2, · · · , θm

�T is the vector collecting the model parameters,
x∗ =

�
x0, x1, x2, · · · , xm

�T is the augmented feature vector with x0 = 1, fθ (·)

40

is often called hypothesis function – a linear function, in this case –, and the
superscript T denotes the transpose operator. To simplify notation, in the
following we write interchangeably x for both x and x∗.

The next step is to identify the parameters θ such that the linear regression
model, fθ (x), best fits the data set {X, y}. This operation is called train-
ing. Training identifies the parameter values that optimize a measure of the
goodness-of-fit, i.e., how well (or poorly) a model fits the data. Various ob-
jective functions, often referred to as loss functions, can be adopted and their
choice strongly determines the subsequent model. Two standard error metrics of
the hypothesis fθ(·) on a set X are often considered which are associated with
the ℓ1 and ℓ2 norms, respectively defined as the mean absolute error (MAE)
and the root mean square error (RMSE):

E1 (X, fθ) ≡ 1
n

nX

k=1

���fθ(x(k)) − y(k)
��� [2.5a]

E2 (X, fθ) ≡

1
n

nX

k=1

�
fθ(x(k)) − y(k)

�2
!1/2

. [2.5b]

One can also broadly define the error based on the ℓr norm, and namely

Er (X, fθ) ≡

1
n

nX

k=1

���fθ(x(k)) − y(k)
���
r
!1/r

. [2.6]

The higher the norm index r, the more the error metrics focuses on large values
and neglects small ones, thus the best fit model intrinsically depends on r. In
most cases, the differences between models based on different norms are small.
However, when there are outliers2 in the data, the choice of the norm can have
a significant impact: for instance, the RMSE is more sensitive to outliers than
the MAE.

In linear regression, the most common choice is the root mean square error,
but in practice, it is simpler to minimize the mean squared error (MSE) than the
RMSE, and it leads to the same result (because the value of θ that minimizes
a function also minimizes its square root). The MSE of a linear regression
hypothesis fθ on a set X is given by

MSE (X, fθ) ≡ E2
2 (X, fθ) = 1

n

nX

k=1

�
θTx(k) − y(k)

�2
. [2.7]

2. An outlier is an observation that lies an abnormal distance from the other values
present in a data set.

41

Once the loss function is defined, training involves the identification of the
parameters that minimize that particular loss. This requires differentiation with
respect to θ to identify the value of the latter such that a minimum of the
error occurs – that is, find those θ for which ∂MSE (X, fθ) /∂θ = 0. Note that,
although a zero derivative denotes either a minimum or a maximum, we know
this must be a minimum of the error since there is no maximum error, i.e., we
can always find a model that has a larger error.
Following the above procedure, the values of the parameters for which the error
is minimum, θ̂, are the solution of the following linear system of equations

XTXθ̂T = XTy. [2.8]

If the matrix XTX is square and invertible (i.e., it has nonzero determinant),
then there exists a unique solution θ̂ which is given by the normal equation,

θ̂T =
�
XTX

�−1 XTy. [2.9]

However, when XTX is singular, the normal equation does not hold. An al-
ternative way to solve equation [2.4] consists of using the Moose-Penrose pseu-
doinverse3 X+ of X to obtain the general solution

θ̂ = X+y, [2.10]

obtained by leveraging the commutative property (X+)T =
�
XT�+.

We have now all the necessary ingredients for building a linear regression model:
it is time to move to a simple example.

2.2.1. Example

Let consider fitting a data set, shown in Figure 2.2, generated by the function

y = α2 exp (α1x + U (−1, 1)) , α1 = 1, α2 = e, [2.11]

3. The pseudoinverse is computed using the matrix factorization technique called
singular value decomposition that can decompose the independent variables matrix X
into the multiplication of three matrices UΣVT (assuming X is a real-valued matrix).
The pseudoinverse is computed as X = VΣ+UT. To compute the matrix Σ+, the
algorithm takes Σ and sets to zero all values smaller than a tiny threshold value,
then it replaces all the nonzero values with their inverse, and finally it transposes the
resulting matrix.

42

where U (−1, 1) is a uniformly distributed random variable that lies between
−1 and 1. The snippet hereinafter generates our data set:
import numpy as np
np.random.seed(42)
n_snapshots = 200 # set number of snapshots: n
a_1 = 1.; a_2 = np.exp(1) # set coefficients
noise = np.random.uniform(-1,1,(n_snapshots,1)) # uniform noise
X = np.random.uniform(0,4.,(n_snapshots,1)) # independent variable X
y = a_2*np.exp(a_1*X+noise) # dependent variable y

At this point, we can use the normal equation [2.9] and compute the values θ̂,
using NumPy’s linear algebra module (np.linalg) to calculate the inverse of
a matrix and the dot() method for matrix multiplication:
X_p = np.c_[np.ones((n_snapshots, 1)), X] # add x0 = 1 to each instance
theta_best = np.linalg.inv(X_p.T.dot(X_p)).dot(X_p.T).dot(y)
print(theta_best) # parameters
array([[-16.93873601],

[28.05702557]])

The normal equation gives a linear model of the form ŷ ≈ −16.9 + 28.0x. Let’s
check if the model correctly fits the data set, making predictions as follows
X_new = np.array([[0],[4]])
X_b = np.c_[np.ones((2,1)), X_new] # add x0 = 1 to each instance
y_predict = X_b.dot(theta_best)

Finally, we can plot the predictions (y_predict) with the training data set,
see Figure 2.2. As one could have imagined from the very beginning, the linear
regression model poorly fits the nonlinear data set. But, as in most cases, data
set preparation and transformation may help us in improving the model predic-
tions. In this particular case, one has to simply perform a change of coordinates,
defining y′ = ln(y) and α′

2 = ln(α2). Such a transformation (magically) per-
forms the linearization of the original data set, which from [2.11] now becomes

y′ = α′
2 + α1x + U (−1, 1) , α1 = 1, α′

2 = 1, [2.12]

Let’s try to apply the following changes to the original data set, repeating the
linear regression fit, and plotting the predictions:
y_prime = np.log(y) # change of coordinate, y' = ln(y)
X_b = np.c_[np.ones((n_snapshots, 1)), X] # add x0 = 1 to each instance
theta_best = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y_prime)
X_new = np.array([[0],[4]])
X_b = np.c_[np.ones((2,1)), X_new] # add x0 = 1 to each instance
y_predict = X_b.dot(theta_best) # parameters
print(theta_best)

43

array([[0.99530983],
[0.98646971]])

Done! The linear regression now correctly fits the transformed data set, iden-
tifying the following model: ŷ′ = 0.98 + 0.99x. Note that the presence of noise
renders impossible to retrieve the exact values of the intercept and the angular
coefficient. Alternatively, a simpler (and more concise) way to perform a linear
regression fit is to directly compute the pseudoinverse of the independent vari-
able matrix x, see equation [2.10]. This can be done, in few lines of code, using
Scikit-Learn’s library (Buitinck et al. 2013):
from sklearn import linear_model
from sklearn.metrics import mean_squared_error
regr = linear_model.LinearRegression() # create linear regression object
regr.fit(X, y_prime) # train the model
y_predict = regr.predict(X) # make predictions
print("Parameters: ", regr.intercept_,regr.coef_) # parameters
print("Mean squared error: %.4f " % mean_squared_error(y_prime,

y_predict)) # MSE
Parameters: [0.99530983] [[0.98646971]]
Mean squared error: 0.3459

2.3. Gradient descent

We have seen that linear regression allow us to fit data sets with pre-identified
linear models or hypothesis fθ. The advantages are (i) the admission of analyt-
ically tractable, best-fit solutions and (ii) the reduced computational complex-
ity. However, the major drawback is the impossibility to fit nonlinear functions,

0.0 1.0 2.0 3.0 4.0

x

0

50

100

150

200

250

y

0.0 1.0 2.0 3.0 4.0

x

0

50

100

150

200

250

y

predictions

Figure 2.2: Linear regression: an example and a failure (!). Randomly generated data
set (left) – y = α2e(α1x+U(−1,1)) – and linear regression model predictions (right).

44

much more abundant in nature than linear ones (cf. Chapter 5).
To this end, the general theory of nonlinear regression4 considers a nonlinear
hypothesis function fθ (x), in contrast with the linear function in equation
[2.3]. In this case, if we proceed as we have done for linear regression – that
is, requiring that ∂MSE (X, fθ) /∂θ = 0 – we obtain the following nonlinear
system of equations

1
n

nX

k=1

�
fθ(x(k)) − y(k)

� ∂fθ
∂θ

= 0. [2.13]

Unfortunately, there are no analytical methods to solve such a nonlinear system
for a general (unspecified) nonlinear hypothesis fθ. And, actually, sometimes
equation [2.13] may even not admit a solution or admit an infinity of solutions.
In such scenarios, the idea to solve the nonlinear system [2.13] is to resort to
iterative approaches which, depending on the good (or bad) initial guess, may
converge to the global (or a local) minimum error.

One of the most effective approaches to identify the roots of a nonlinear
system of equations is gradient descent (Boyd and Vandenberghe 2004). Gradi-
ent descent (GD), also called steepest descent, is an optimization algorithm for
finding a local minimum of a differentiable function – that is, a set of optimal

4. Note, however, that if we formulate the nonlinear regression problem differently,
within a reduced special setting, a seemingly linear hypothesis function can actually
be formulated (cf. Section 2.5.)

0.0 1.0 2.0 3.0 4.0

x

0

1

2

3

4

5

6

y
� =

ln
(y
)

predictions

Figure 2.3: Comparison of the linear regression model predictions with the linearized
data set, see equation [2.12].

45

parameters θ that minimizes a given (differentiable) loss function.
A quite easy way to grasp the essence of gradient descent is to imagine ourself
lost in a foggy mountain, where visibility is so limited that we can only sense
the slope beneath our feet. To find the way out quickly, a smart approach would
be to head downhill, following the steepest slope.5 This is exactly what gradient
descent does: it measures the local gradient of the loss function with regard
to the parameters θ and tweaks the latter to go in the direction of descending
gradient. Once the gradient is zero, we have reached the minimum.
Let’s break it down further. At the beginning, θ is filled with random values,
or some other predefined values. This process is called initialization. Then, in
small incremental steps, often called epochs, the algorithm tweaks repeatedly
the parameters to minimize the value of the loss function E (θ, fθ) (that must
be differentiable for all θ – which also implies that fθ must be differentiable
for every θ) according to the regular gradient descent optimizer equation

θ next step = θ − η
∂E

∂θ
(θ, fθ) , [2.14]

where η is the learning rate. In other words, we need to compute how much the
loss function E will change if we change θi just a little bit, with i = 1, 2, · · · , m.
By resorting to the analogy of the foggy mountain, it is like asking “What is
the slope of the mountain under our feet if we face east?” and then asking the
same question facing north (and so on for all other dimensions i up to m, if we
can imagine a universe with more than three dimensions).
After having computed the gradient vector ∂E/∂θ which points uphill, we just
have to head in the opposite direction to go downhill – that is, subtracting
the gradient from the parameters θ, with a weighting factor η. This process
continues until the algorithm converges, reaching a (global or local) minimum
value, as shown in Figure 2.4.
When optimizing an objective function using GD two important aspects must

be considered:
– The size of the incremental steps, which is determined by the learning rate,

η. The latter is a hyperparameter. A hyperparameter is a variable controlling
the learning process (in contrast to the model parameters that are determined
via training). The learning rate, as such, is crucial in identifying the best value
of the parameters θ within the smallest number of iterations. Indeed, if η is set
too small, the algorithm will require numerous iterations to converge, resulting
in a time-consuming computations. Conversely, if η is excessively high, we
might overshoot the minimum and end up on the opposite side, potentially at

5. Disclaimer: if you are truly lost on a mountain, then you should probably stop and
wait for a break in the fog, rather than following the steepest descent.

46

initial

lo
ss

 fu
nc

tio
n

learning rate

lo
ss

 fu
nc

tio
n learning rate

initial

Figure 2.4: Schematic representation of gradient descent, the model parameters are
initialized randomly and get tweaked repeatedly to minimize the cost function; the learning
step size is proportional to the slope of the cost function, so the steps gradually get smaller
as the parameters approach the minimum.

a point where error is higher than before. This scenario could even cause the
algorithm to diverge, producing increasingly larger error values and failing to
find an optimal solution.

– The loss function. Not all loss functions exhibit a smooth, bowl-like shape
as the ones depicted in Figure 2.4. Depending on the choice of loss function
and the hypothesis function, we may find irregularities such as holes, ridges,
plateaus, and many local minima, creating challenges for convergence towards
the (global) minimum. Also remember that the loss function must always be
differentiable,6 otherwise we cannot compute the optimizer equation [2.14].
Figure 2.5 highlights some of the primary obstacles that we may encounter with
some loss functions and, in most of the cases, for nonlinear hypotheses fθ – but
also in neural networks (cf. Chapter 5). When the algorithm starts on the left
due to random initialization, it attempts to converge to a local minimum, which
may not be as desirable as the global minimum. This same local minimum is
a point of discontinuity which renders even more difficult the convergence. On
the other hand, if the algorithm begins on the right, it finds a plateau and
crossing it takes an extensive amount of time and if we prematurely stop the
algorithm we won’t succeed in reaching the global minimum.

6. In reality, when dealing with a loss function that is not everywhere differentiable,
an ad-hoc subgradient procedure can be used. Instead of calculating the gradient, we
use a subgradient that provides a valid lower bound on the slope of the loss function
at that particular singular point.

47

local minimum global minimum

plateau

point of
discontinuity

lo
ss

 fu
nc

tio
n

Figure 2.5: Gradient descent for a general non convex loss function (readapted from
Géron 2022).

Nonetheless, the MSE for linear regression models happens to be always
differentiable and convex: great news! This means that any two points on
the curve can be connected by a line segment that never intersects the curve.
Consequently, there are no local minima, only one single global minimum.
Moreover, the MSE function is continuous, exhibiting a slope that changes
gradually (differently from the MAE). These characteristics have a significant
implication: given sufficient time and an appropriate value of the learning rate,
gradient descent is guaranteed to approach the global minimum closely.
In linear regression, the shape of the MSE loss function always resembles a bowl.
However, we should note that the latter can be elongated if the parameters –
that is, the features – have different scales. Figure 2.4, right, demonstrates
GD applied to a set with features θ1 and θ2, where the latter has significantly
smaller values than the former. Note that, in general, when features have quite
different scales, the convergence to the global minimum requires a large number
of iterations. Such a drawback can be easily overcome by appropriately scaling
the features – that is, by scaling the independent and dependent variables (cf.
Section 2.4).

It is worth noting that training a model, whether linear or not, involves
searching for a perfect combination of model parameters that minimizes the
loss function across the entire data set. This search takes place within the
vast parameter space of the model. Imagine we are trying to train a model
with an extensive set of parameters that surpasses the simplicity of the one-
and two-parameters models in Figure 2.4. In this scenario, we are essentially
following the same steps as before, but now in a higher-dimensional space. The
dimension of this space is equal to the number of parameters, making the search
much more challenging. Indeed, finding a needle in a haystack that has 1000
dimensions is significantly more intricate than doing so in just two dimensions.
However, in the case of linear regression (unlike artificial neural networks, see
Chapter 5), the loss function has optimal properties and the needle (global
minimum) always resides comfortably at the bottom.

48

2.3.1. Batch gradient descent

Batch gradient descent is the most cumbersome implementation of the GD al-
gorithm. It involves the use of equation [2.14] for the full training set X at
every step – that is, the whole batch of training data (and this is the reason of
its name).
Applying batch GD for a linear regression problem starts with the computa-
tion of the partial derivative of the MSE function with respect to the model
parameter,

∂

∂θ
MSE (X, fθ) = 2

n
XT (Xθ − y) , [2.15]

and continues by recursively using equation [2.14] to update the parameters.
The recursion stops when we have reached the prescribed number of steps
(epochs) or the error has become smaller than a prescribed threshold.

We can now use the training data set from the previous example and find
a linear regression model by means of batch GD:
eta = 0.05 # learning rate
n_epochs = 500 # no epochs
theta = np.array([[0.],[0.]]) # initialization
for epoch in range(n_epochs):

gradients = 2/n_snapshots * X_p.T.dot(X_p.dot(theta) - y_prime) # [2.15]
theta = theta - eta * gradients # optimizer [2.14]

print(theta)
[[0.99530187]
[0.98647279]]

It should come as no surprise that we obtain the same result as using the nor-
mal equation. However, we might wonder what would happen if we had chosen
a different learning rate. In Figure 2.6, we visualize the predictions of the same
linear model within the first 10 iterations using different learning rates, all
starting from the same initial point (represented by the dotted line). Similarly,
Figure 2.7 illustrates the evolution of the model parameters, θ1 and θ2, with
the contours representing the loss function (MSE) that has a global minimum
approximately located at (1, 1). Starting from the left, we observe that with
a relatively high learning rate, the algorithm bounces around during each it-
eration. In this particular scenario, if we select a larger value of the learning
rate, the algorithm will diverge and we will never reach the minimum (you can
try by yourself with the above code). In the middle, a moderately appropriate
learning rate allows gradient descent to smoothly reach the global minimum.
On the right, with a very low learning rate, the algorithm will eventually con-
verge to the solution, but it will take a considerable amount of time.

49

To identify an appropriate learning rate value, we can employ two strategies:
first, we can use an adaptive learning rate (see paragraph 2.3.2) or second, we
can fine-tune the learning rate using grid search7 (Géron 2022).

Despite being much faster than using the normal equation [2.9] or comput-
ing the pseudoinverse [2.10] for high-dimensional linear regression tasks, batch
GD is the most computationally demanding among all gradient descent vari-
ants and the most vulnerable to “bad” initialization. In addition, the evaluation
of the optimizer equation [2.14] is often computationally intractable, especially
for deep neural networks (cf. Chapter 5). This is primarily due to two reasons:
(i) the parameter vector, collecting the parameters θm, can be quite large, and

7. Grid search is a technique used in ML to systematically search for the optimal
combination of hyperparameter values for a given model. It involves specifying a set
of possible values for each hyperparameter and exhaustively evaluating the model
performance using all possible combinations of these values. By evaluating the model
accuracy for each combination, grid search helps identify the hyperparameter config-
uration that yields the best performance.

Figure 2.6: Batch gradient descent with various learning rates with the same parameters
initialization.

Figure 2.7: Evolution of the model’s parameters during batch gradient descent with
various learning rates (see Figure 2.6).

50

(ii) the number of data points n can also be large. Thus, utilizing the entire
training set for computing the gradient can hinder convergence speed.
As it follows, we will explore two alternative versions of gradient descent
that can enhance the convergence speed to the minimum of the loss function:
stochastic and mini-batch gradient descent.

2.3.2. Stochastic gradient descent

Stochastic gradient descent is a version of gradient descent that differs from
batch gradient descent in how it estimates the gradient in equation [2.14]. In-
stead of using all n training data points, stochastic GD randomly selects a
single datum (snapshot) from the training set to estimate the gradient at each
iteration. As a result, stochastic GD is faster than batch GD: it only needs to
process a single instance at a time allowing efficient memory allocation when
dealing with large data sets (see also Chapter 5).
However, due to its stochastic nature, stochastic GD exhibits less smooth be-
havior compared to batch GD. Instead of smoothly decreasing towards the
minimum, the loss function experiences fluctuations, with only an average er-
ror decrease over iterations. Consequently, when the algorithm stops, the final
parameter values are generally good but not necessarily optimal. Yet, it is
worth noting that the inherent randomness in stochastic GD can actually aid
in escaping eventual local minima, increasing the chances of finding the global
minimum compared to batch GD.
Hereinafter, we implement the stochastic GD for the same above example:

eta = 0.05 #learning rate
n_epochs = 20 # no epochs
theta = np.array([[0],[0.]]) #initialization
for epoch in range(n_epochs):

for i in range(n_snapshots): # iterate over each snapshot
random_index = np.random.randint(n_snapshots) # random snapshot
xi = X_p[random_index:random_index+1]
yi = y_prime[random_index:random_index+1]
gradients = 2 * xi.T.dot(xi.dot(theta) - yi)
theta = theta - eta * gradients # [2.15]

print(theta)

[[0.83905266]
[1.15041967]]

The results are shown in Figure 2.8, where we can observe that the algorithm
struggles in converging to the global minimum, rather bouncing all around.
This is to the significant dependence of stochastic GD on the learning rate,
which in turn is due to inherent stochastic nature of the former.

51

Figure 2.8: Stochastic gradient descent and evolution of the parameters, with constant
learning rate.

The problem can be alleviated by gradually adapting the learning rate while
training. Below, we repeat the learning process using a rather simple learning
schedule that linearly decrease the learning rate at each epoch:
theta = np.array([[0],[0.]]) #initialization
t0, t1 = 1, 100 # learning schedule hyperparameters
def learning_schedule(t):

return t0 / (t + t1)
for epoch in range(n_epochs):

for i in range(n_snapshots):
random_index = np.random.randint(n_snapshots)
xi = X_p[random_index:random_index+1]
yi = y_prime[random_index:random_index+1]
eta = learning_schedule(epoch * n_snapshots + i) # schedule
gradients = 2 * xi.T.dot(xi.dot(theta) - yi)
theta = theta - eta * gradients

print(theta)

[[0.90607535]
[1.02276101]]

Super effective! In 20 iterations only, the algorithm converges – relatively
close – to the global minimum, as depicted in Figure 2.9. And this should be
compared with the 500 iterations that were needed for the batch GD to reach
the minimum.

2.3.3. Mini-batch gradient descent

Once we grasped both batch and stochastic GD, understanding mini-batch GD
becomes straightforward if we get inspiration from Aristotle’s (Latin) quote:
“In medio stat virtus” – that is, “the best option lies between two extremes.”
Instead of computing gradients based on the entire training set (batch GD) or
a single datum (stochastic GD), mini-batch GD computes gradients on small

52

random sets of data points known as mini-batches. This approach offers the
advantage of leveraging optimized matrix operations, resulting in improved
performance compared to stochastic GD. At the same time, it avoids the need
for large memory allocation required by batch GD. Depending on the size of
the mini-batch, the optimization path followed by mini-batch GD is less erratic
than its stochastic counterpart, often leading to a more optimal minimum.

Implementing mini-batch GD is relatively simple. We only need to make
slight modifications to the stochastic GD algorithm and provide an iterator to
extract mini-batches:

def iterate_minibatches(inputs, targets, batchsize, shuffle=False):
'''Iterator over mini-batches
:param inputs, targets: independent and dependent variables
:param batchsize: mini-batch size
:param shuffle: shuffle mini-batches
:return: mini-batches of inputs and targets'''
Check if no of samples in inputs and targets are equal
assert inputs.shape[0] == targets.shape[0]
if shuffle:

indices = np.arange(inputs.shape[0]) # array of indices
np.random.shuffle(indices) # Shuffle indices

Iterate over mini-batches
for start_idx in range(0, inputs.shape[0] - batchsize+1, batchsize):

if shuffle: # subset of shuffled indices
excerpt = indices[start_idx:start_idx + batchsize]

else: # slice to select samples
excerpt = slice(start_idx, start_idx + batchsize)

yield inputs[excerpt], targets[excerpt] # return mini-batches
eta = 0.05 #learning rate
theta = np.array([[0],[0.]]) #initialization
batch_size = 30 # define mini-batches size
for epoch in range(n_epochs):

for batch in iterate_minibatches(X_p, y_prime, batch_size,
shuffle=True):

x_batch, y_batch = batch
gradients = 2/batch_size * x_batch.T.dot(x_batch.dot(theta)

- y_batch)

Figure 2.9: Stochastic gradient descent with learning schedule.

53

theta = theta - eta * gradients
print(theta)
[[0.94862053]
[0.96679924]]

Done: much faster and accurate than the stochastic GD! Figure 2.10 depicts the
predictions of the model within the first 10 iterations of the algorithm and the
parameters evolution. Note that the value of the minimum reached by the mini-
batch GD intrinsically depends on the selected size of the mini-batch. The latter
represents yet another important hyperparameter of the optimization problem.
To perform the same task, we could also use Scikit-Learn, and namely the
SGDRegressor class, which by default minimizes the MSE. The following code
runs for maximum 20 epochs or until the loss drops by less than 0.001 during
one epoch (max_iter=20, tol=1e-3). It starts with a learning rate equal to
eta and use the following learning schedule: η(next step) = ηt−1/4. The option
penalty=None avoids the use of regularization strategies (cf. Section 2.6).
from sklearn.linear_model import SGDRegressor
sgd_reg = SGDRegressor(max_iter=20, tol=1e-3, penalty=None, eta0=eta)
for epoch in range(n_epochs):

for batch in iterate_minibatches(X_p, y_prime, batch_size,
shuffle=True):

x_batch, y_batch = batch
sgd_reg.partial_fit(X, y_prime.ravel()) # partial_fit mini-batch

print(sgd_reg.intercept_, sgd_reg.coef_)
[1.00172812] [1.00508048]

Also note that if we were performing stochastic GD, we would not need to iter-
ate over the mini-batches, and we should replace partial_fit() with fit().

In conclusion, the three alternative algorithms for gradient descent – batch,
stochastic, and mini-batch – are powerful tools for solving an optimization prob-
lem and they should be preferred to the normal equation and the computation

Figure 2.10: Mini-batch gradient descent.

54

of the pseudoinverse, when dealing with a high-dimensional linear regression
problem (with large numbers of data sets or large number of parameters).
The main difference among the three alternatives is summarized by Figure 2.11
which provides a comparison for the parameters trajectory during training. The
mini-batch GD is often preferred as it allows a good compromise in terms of
the goodness of the reached minimum and the computational speed, however
it is difficult to provide strict recommendations for a general case. As a rule
of thumb, we may opt for a mini-batch GD and train the model with different
mini-batch sizes – if equal to 1, we will resort to stochastic GD, if equal to
the training set size, we will end up with batch GD. Finally, it is worth notic-

Figure 2.11: Gradient descent paths comparison in the parameters space.

ing that herein we limited ourselves to the standard optimizer equation [2.14],
however alternative and more effective solutions exist (cf. Chapter 5).

2.4. Data preprocessing and model validation

In the above examples, we have seen how to perform linear regression given
some training data sets. However, we have neglected two important aspects
common to all ML models – regression included: feature scaling and models
validation. The former is part of the preprocessing to train a model, while the
latter can be interpreted as postprocessing of the trained model.

2.4.1. Feature scaling

Feature scaling is a crucial step in preparing data for ML. Indeed, all gradient
descent algorithms and in general most of the optimization algorithms struggle
in dealing with variables with different scales (e.g. Figure 2.4). In the frame of
gradient descent, there are two common methods to address this issue: nor-
malization and standardization.

55

Both techniques transform a feature x into its scaled counterpart x̄, according
to

x̄ = 1
α

(x − β) . [2.16]

Normalization shifts and re-scales the feature values to a range between −1
and 1, by considering α ≡ 1

2 (max(x) − min(x)) and β ≡ α + min(x). On the
other hand, standardization transforms the feature in a distribution with a zero
mean and unit variance, by considering α ≡ σ(x) and β ≡ µ(x), with µ and σ
being the mean and standard deviation, respectively.
Normalization is simple and confines values to a specific range, while standard-
ization is not bounded to a range and is less affected by outliers. Whether it
is more appropriate to normalize or standardize the data depends mainly on
the loss function and the statistics of the data themselves – when the latter are
uniformly distributed, normalization is to be preferred, in all the other cases,
standardization is the best choice.
Hereinafter an explicit implementation of both scaling techniques, depending
on how the function is called:

def scaling(x, fit=False, transform=False, inverse_transform=False,
norm=True, param=None):

''' scale variable x
:param x: variable
:param fit: find scaling parameters
:param transform: scale x
:param inverse_transform: inverse scale x
:param norm: inverse scale x
:param fit: scaling parameters
:return: scaling parameters (if fit=False)

scaled x (if transform=True)
inverse scaled x (if inverse_transform=True) '''

if fit==True:
if norm==True:

min_ = np.amin(x); max_ = np.amax(x)
a = 0.5*(max_-min_)
b = 0.5*(max_+min_)

else:
a = np.std(x)
b = np.mean(x)

return [a,b]
elif transform==True:

return np.divide(x-param[1],param[0])
elif inverse_transform==True:

return np.multiply(x,param[0])+param[1]

One could also use directly Scikit-learn’s preprocessing module.

56

2.4.2. Test and validation of a model

In the examples above, we discovered regression models that best fits some
training data {X, y}. However, in the general case, and not only in the frame of
regression methods, we need to evaluate how well a (regression) model performs
on new data. To this end, we must first define three notions: interpolation,
generalization, and extrapolation.
Definition 1. Interpolation is the ability of predicting values within the range
of observed data points.
In the context of regression, it means predicting the value of the dependent
variables for values of independent variables that lie within the range of the
training data.
Definition 2. Generalization is the ability of making predictions for new, previ-
ously unseen data, drawn from the same distribution as the ones used to train
the model.
Machine learning is all about having models that can generalize well. Trained
to solve one problem, the model attempts to utilize the patterns/relationships
learned from that task to solve the same task, with slight variations. Whilst
the existence of a subtle difference between interpolation and generalization,
both terms are often adopted interchangeably.
Definition 3. Extrapolation is the ability of predicting values beyond the range
of the observed, training data points.
Extrapolation requires a solid understanding of the relationships identified by
a model to apply the same outside the familiar data range. It is challenging
for current ML models to reliably extrapolate, as they often specialize in spe-
cific tasks and struggle with broader applications. Many artificial intelligence
methods are inherently interpolative, and constructing extrapolative or “intel-
ligent” algorithms still remains an open challenge (cf. Section 2.7, Chapter 5
and Chapter 3, vol. II).

From the aforementioned definitions, it is clear that we should always test
models in order to quantify their generalization capabilities. A cumbersome
approach consists of dividing the original data set into two: a training set and
a test set.
The training set is used to train the model, as we have already seen, while
the test set is used to assess its performance. The latter is estimated by means
of the generalization error, which measures the error of the trained model on
the (unseen) test data set. Thus, if a model has low training error but high
generalization error, it indicates overfitting to the training data. Overfitting
is defined as the phenomenon where a model becomes overly complex and
excessively fits the training data set, capturing noise and irrelevant patterns
instead of learning the true underlying patterns and relationships.

57

However, evaluating the generalization error multiple times on the same test
set and optimizing the model and hyperparameters (such as the learning rate
in gradient descent, or the mini-batch size in mini-batch GD) specifically for
that set may be suboptimal. Indeed, the model will unlikely perform as well on
new data.

2.4.2.1. Hold-out validation
To mitigate the problem arising from testing a model on the same test set, a
common solution is hold-out validation. A portion of the training set is reserved
as a validation set. Multiple candidate models with different hyperparameters
are trained on the reduced training set, and the one that performs best on the
validation set is selected. The best model is then trained on the full training
set, including the validation set, to create the final model. The performance of
the latter is then evaluated on the test set to quantify the generalization error.

While hold-out validation is effective, the size of the validation set is crucial.
If it is too small, evaluations may be imprecise, leading to the selection of
suboptimal models. Conversely, if the validation set is too large, the remaining
training set becomes significantly smaller, making it unfair to compare models
trained on a much smaller set.
As a rule of thumb (and a first good guess), we often split data in 60%-20%-20%
for training-validating-testing. We can easily do it, by leveraging Scikit-learn:
from sklearn.model_selection import train_test_split
split into training+validation and test sets
X_tv, X_tv, y_train, y_test = train_test_split(X, y, test_size=0.2)
split into training and validation sets - note: 0.25 * 0.8 = 0.2
X_train, X_val, y_train, y_val = train_test_split(X_tv, y_tv, test_size=0.25)

2.4.2.2. Cross-validation
Repeated hold-out validation addresses the issue related to the choice of the
validation set size by using multiple small validation sets. This process is called
k-fold cross-validation, where the training data set is further partitioned into
k-folds, which are typically randomly selected portions of the original set.
In k-fold cross validation, the training data is randomly partitioned into k
partitions (or folds). Each partition is used to construct a regression model
ŷ(l) = fθ(l)(x(l)) for l = 1, 2, · · · , k. Then, the final, cross-validated model is
constructed by averaging the values of the parameters obtained from each fold
– that is, θ = 1/k

Pk
l=1 θ(l).

Despite its great advantage over hold-out validation, cross-validation may in-
crease tremendously the learning process as each model needs to be trained on
different validation sets. We will implement cross-validation both using Scikit-
learn (cf. example in paragraph 2.5.1) and performing the aforementioned steps
explicitly (cf. application in paragraph 2.7.1).

58

2.5. Nonlinear regression

Up to this point, we have seen how to train and validate linear models that
best fits some data. However, what if the data are more complex and cannot
be fitted, with good approximation, by a simple straight line?
In that case, we may simply resort (spoiler alert!) to artificial neural net-
works (see Chapter 5). But, no worries! A much simpler alternative exists:
we can actually fit a linear model to nonlinear data. To this end, we just
need to replace the original set of independent variables, x, with a library
ϕ(x) =

�
ϕ1(x),ϕ2(x), · · · ,ϕl(x)

�T of l candidate basis functions, e.g., poly-
nomials, trigonometric or radial basis functions, or any other user-supplied
function. In so doing, equation [2.4] becomes

ŷ = θT ϕ(x). [2.17]

Everything is settled and we can move straightforward to an example. This
time, we will also take care of preprocessing the data (see Section 2.4). We will
consider as candidate basis functions only polynomial ones: the regression is
thus said to be polynomial.

2.5.1. End-to-end example

Let us consider a data set given by

y = sin(|x|) + sin(x2) + N (0, σ), [2.18]

where N (0, σ) is a normally distributed random variable with mean zero and
standard deviation σ. To generate the data, we use the code below:
import matplotlib.pyplot as plt
import numpy as np
np.random.seed(42)
n_snapshots = 200
noise = np.random.normal(0,0.5,(n_snapshots,1)) # generate normal noise
X = np.random.uniform(-np.pi,np.pi,(n_snapshots,1))
y = np.sin(np.abs(X))+np.sin(X)**2+ noise

Now, we proceed by splitting the data set into a training and test set, using
Scikit-Learn’s train_test_split. Then, we scale both independent and de-
pendent variables based on the statistics of the training data set (see Section
2.4).

59

from sklearn.model_selection import train_test_split
split into training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
compute scaling params
param_x = scaling(X_train,fit=True) # scaling params for X
param_y = scaling(y_train,fit=True) # scaling params for y
scale X (training and test sets)
norm_X_train = scaling(X_train,transform=True,param=param_x)
norm_X_test = scaling(X_test,transform=True,param=param_x)
scale y (training and test sets)
norm_y_train = scaling(y_train,transform=True,param=param_y)
norm_y_test = scaling(y_test,transform=True,param=param_y)

At this point, we have to construct the polynomial basis functions, with Scikit-
Learn’s PolynomialFeatures (we stop at the sixth degree). Then, we can sim-
ply perform a linear regression
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
poly_features = PolynomialFeatures(degree=6, include_bias=False)
norm_X_poly = poly_features.fit_transform(norm_X_train)
lin_reg = LinearRegression()
lin_reg.fit(norm_X_poly,norm_y_train) # perform linear regression
lin_reg.intercept_, lin_reg.coef_ # theta_0 and theta_m

(array([-0.35987146]),
array([[0.20041976, 7.23777176, -0.72575099, -16.10685101,

0.48763306, 8.95138004]]))

Not so difficult! The model finds the following best-fit equation

ŷ = −0.36 + 0.20x + 7.24x2 − 0.73x3 − 16.11x4 + 0.49x5 + 8.95x6.

We can now deploy it to make predictions and compare the latter with the test
set
x = np.expand_dims(np.linspace(-np.pi,np.pi,200),1)
norm_x = scaling(x,transform=True,param=param_x)
norm_x_poly = poly_features.fit_transform(norm_x)
norm_y_predicted = lin_reg.predict(norm_x_poly)

Figure 2.12, left, compares the predictions with the training and test sets and
below we evaluate the MSE of the predictions for the training and test sets:
from sklearn.metrics import mean_squared_error
norm_X_test_poly = poly_features.fit_transform(norm_X_test)
norm_y_predicted_train = lin_reg.predict(norm_X_poly)
norm_y_predicted_test = lin_reg.predict(norm_X_test_poly)
print('MSE on train set: ', mean_squared_error(norm_y_predicted_train,

norm_y_train))
print('MSE on test set: ', mean_squared_error(norm_y_predicted_test,

norm_y_test))

60

Figure 2.12: Nonlinear regression using polynomial basis functions with: degree six (left)
and different degrees (right). Features are scaled.

MSE on training data set: 0.05173368072737507
MSE on test data set: 0.05142192371233674

The model performs quite well on both sets. However, we skipped two impor-
tant aspects: (i) hyperparameters selection and (ii) validation of the model.

2.5.1.1. Hyperparameters selection

The degree of the polynomial basis is actually a hyperparameter. Thus, we
cannot a priori say that the analysis is completed – that is, whether or not we
found the best model fot the data set at hand. To this end, we need to train
multiple models with different degrees:

degree = [2,6,50,100] # different polynomial degrees
color = ['black','red','darkblue','darkorange']
fig = plt.figure(figsize=(3., 2.))
plt.plot(norm_X_train,norm_y_train,'ko',alpha=0.2)
plt.plot(norm_X_test,norm_y_test,'ko')
for i in range(len(degree)):

poly_features = PolynomialFeatures(degree=degree[i],
include_bias=False)

norm_X_poly = poly_features.fit_transform(norm_X_train)
lin_reg = LinearRegression() # linear regression model
lin_reg.fit(norm_X_poly,norm_y_train) # fit model
norm_x_poly = poly_features.fit_transform(norm_x)
norm_y_predicted = lin_reg.predict(norm_x_poly)
plt.plot(norm_x,norm_y_predicted,'-',color=color[i],

linewidth=3,label=str(degree[i]))
plt.ylim(-1,1)
plt.xlim(-1,1)
plt.show()

61

The results are depicted in Figure 2.12, right, and from them we can draw
some conclusions: (i) a quadratic model is unable to fit the data and (ii) high-
degree – 50 and 100, here – polynomial models wiggle around to get as close
as possible to the training data points. In other words, the quadratic model is
underfitting, while for high polynomial degrees, the model tends to overfit the
training set. So, how can we select the best models – that is, the one that will
generalize best (cf. Section 2.4)? To answer let’s move to the second part of
this example: model validation.

2.5.1.2. Validation

We have already seen in Section 2.4 that a crucial aspect in finding models that
generalize well is to perform hold-out validation. To this end, we should assess
the model’s performance by examining the validation error at varying of the
size of the training set (and eventual hyperparameters). By repeatedly training
the model on subsets of varying sizes from the training set, we can generate
informative plots that will guide us in selecting the model with the minimum
error on the validation set. Below we implement a function that is designed to
plot the training, validation, and test errors of models with different polynomial
degrees (up to 40).
def learning_curves(X_train, y_train, X_test, y_test, degree):

degree +=1
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train,

test_size = 0.25)
norm_X_val = scaling(X_val,transform=True,param=param_x) # scale
model = LinearRegression()
train_errors = np.zeros((degree-1,len(X_train)-1))
val_errors = train_errors.copy()
test_errors = train_errors.copy()
for deg in range(1,degree):

for m in range(1, len(X_train)):
Construct polynomial library up to degree = deg
poly_features = PolynomialFeatures(degree=deg,

include_bias=False)
X_train_poly = poly_features.fit_transform(norm_X_train)
X_val_poly = poly_features.fit_transform(norm_X_val)
X_test_poly = poly_features.fit_transform(norm_X_test)
Fit model
model.fit(X_train_poly[:m], y_train[:m])
Predict training, validation, and test
y_train_pred = model.predict(X_train_poly[:m])
y_val_pred = model.predict(X_val_poly)
y_test_pred = model.predict(X_test_poly)
Store errors
train_errors[deg-1,m-1] = mean_squared_error(y_train[:m],

y_train_pred)
val_errors[deg-1,m-1] =mean_squared_error(y_val,

y_val_pred)
test_errors[deg-1,m-1] = mean_squared_error(y_test,

y_test_pred)

62

return train_errors, val_errors, test_errors
train, val, test = learning_curves(norm_X_train, norm_y_train,

norm_X_test, norm_y_test, degree=40)

Let first have a look at the error on the training and validation sets for a sixth-
degree polynomial model, depicted in Figure 2.13. We start by analyzing the
behavior of the training error. When there is a small bunch of training points,
the model can perfectly fit those data and results in a zero error. However, as
more points are added, the model struggles to fit the data precisely due to the
noise that we artificially added and the intrinsic non-linearity of the function we
are trying to fit. Thus, the error on the training data increases until it reaches
a plateau where additional data won’t significantly affect the mean error.
An analysis on the validation error however rapidly reveals that things are quite
different. When there is a small bunch of training points, the model clearly fails
to generalize well and leads to relatively high validation errors. As the model is
exposed to more training points, it gradually learns and improves, causing the
validation error to decrease and, in this example, to reach approximately the
same plateau of the training error. We are now ready to look at the big picture,

0 20 40 60 80 100 120

training set size

0.00

0.05

0.10

0.15

0.20

0.25

M
S

E

train
val

Figure 2.13: Training and validation MSE at varying of the training set size for a sixth-
degree polynomial model.

namely Figure 2.14, where we can see the variation of the training, validation,
and (optionally) test errors at varying of both the polynomial degree and the
size of the training set.
The training error presents the same aforementioned behavior. Additionally,
we can observe that for any polynomial degree smaller than 6, the error is high
– that is, the model is underfitting the training data. Instead, as we increase
the degree of the model, we observe a slight reduction of the error (caused by
overfitting the training data).
If we move to the validation error, we observe that for training sets smaller than
a certain size, the model does not generalize well (exactly as before). However,
in addition, we (re-)discover overfitting. For degrees larger than 20, the model

63

displays high validation error meaning that it overfits the training data and
cannot accurately predict any other data different from those contained in the
training set (poor generalization).
As we have discussed in Section 2.4, the validation set allows us to pick up
the best model(s) as the one(s) that presents the minimum validation error –
approximately corresponding to a degree equal to 16, in this example. Once we
have selected such model, we can deploy it to make prediction of new/unseen
data – that is, the test set. And, indeed, the minimum error for the test set (i.e.,
the minimum of the generalization error) is located within the region where the
validation error is minimum (see Figure 2.14).

0 10 20 30 40

polynomial degree

40

80

120

tra
in

in
g

se
ts

iz
e

training error

0.0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40

polynomial degree

40

80

120

tra
in

in
g

se
ts

iz
e

validation error

0.0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40

polynomial degree

40

80

120

tra
in

in
g

se
ts

iz
e

test error

0.0

0.1

0.2

0.3

0.4

0.5

Figure 2.14: Training (left), validation (center), and test (right) mean squared errors at
varying of the training set size and the polynomial degree.

An alternative to the above laborious evaluation of the model performances
at varying of the training set size consists of using Scikit-Learn’s k-fold cross-
validation.8 The code below, considering a polynomial regression of degree six,
splits randomly the training set into five distinct folds, then it trains and eval-
uates the model five times, picking a different fold for evaluation every time
and training on the other four folds. The result is an array containing the five
evaluation scores:

8. Note that cross_val_score expects an objective function to be maximized, so the
scoring function is actually the opposite of the MSE.

64

from sklearn.model_selection import cross_val_score
poly_features = PolynomialFeatures(degree=6, include_bias=False)
X_train_poly = poly_features.fit_transform(norm_X_train)
scores = cross_val_score(lin_reg, X_train_poly, norm_y_train,

scoring="neg_mean_squared_error",
cv=5)

mse_scores = -scores
print('Scores: ', mse_scores)
print('Mean scores: ', np.mean(mse_scores))
print('Standard deviation scores: ', np.std(mse_scores))
Scores: [0.09159855 0.07245614 0.04068157 0.04406373 0.03980408]
Mean scores: 0.05772081499906291
Standard deviation scores: 0.0207975583120194

The sixth-degree polynomial model has a MSE of approximately 0.057 ± 0.021
and we would have missed such information if we have just used one validation
set.

2.6. Regularization techniques

2.6.1. Over- and under-determined systems

In linear and nonlinear regression, we are often confronted with a system of
equations, either [2.4] or [2.17], that is under- or over-determined (Gentle 2012).
To investigate these scenarios, let us rewrite equation [2.10] as

Aθ = b, [2.19]

where A ≡ XT is a matrix with n rows and m columns and b ≡ yT is a matrix
with n rows and p columns. Note that an analogous formulation can also be
written for nonlinear regression [2.13].
With reference to equation [2.19], we define overdetermined systems those sys-
tems of equations that have more constraints than unknowns (variables) – i.e.,
when the matrix A is tall-skinny – while underdetermined systems have more
unknowns than constraints – i.e., A is short-fat, see Figure 2.15.

Let us translate these notions from linear algebra to regression methods.
If the number of data points is larger than the dimension of the independent
variables (n > m), then we are dealing with an overdetermined systems of lin-
ear equations. Viceversa, if n < m, we are confronted with an underdetermined
system. In the former case, there are generally no solutions satisfying the linear
system, and instead, approximate solutions are found to minimize a given er-
ror. In the latter, there is an infinite number of solutions, and some additional
constraints must be enforced in order to select an appropriate solution.

65

Note that in regression, we are most often dealing with overdetermined sys-
tems, even if sometimes overparametrization is preferred (Bartlett et al. 2020).
Analogous underdetermined systems are instead met when dealing with over-
parametrized artificial neural networks (cf. Chapter 5) (Jiang et al. 2019).

Overdetermined or underdetermined optimization problems for linear sys-
tems [2.19] involve the minimization of the error of the solution, the MSE for
instance, plus a constraint (n < m) or a penalty (n > m), which is also known
as regularization, i.e.,

θ̂ = argmin
θ

�
MSE (Aθ − b) + λ w(θ)

�
, [2.20]

where λ is a weighting parameter and w(θ) a given function, depending whether
the system is over- or under-determined. Below, we will see how ℓ1 and ℓ2 norm
penalties/constrains can help in solving Aθ = b.

overdetermined system underdetermined system

Figure 2.15: Overdetermined (left) and underdetermined (right) system.

2.6.1.1. Overdetermined systems

When dealing with overdetermined systems, there exists no solution that satisfy
Aθ = b. Thus, penalties based on the ℓ1 and ℓ2 norms are often considered
and the optimization problem [2.20] reads

θ̂ = argmin
θ

�
MSE (Aθ − b) + λ1||θ||1 + λ2||θ||2

�
, [2.21]

where ||θ||r = (|θ|r)1/r denotes the ℓr norm and the parameters λ1 and λ2
control the penalization of the ℓ1 and ℓ2 norms, respectively. The above penalty

66

is crucial for obtain optimal approximate solutions, which are directly affected
by the value of the penalty parameters.

To fix the ideas, consider an overdetermined system of equations. We draw
A and b from normal distributions N [0, 1). We then obtain the parameters θ by
(i) using equation [2.10] and (ii) solving the optimization problem [2.21], con-
sidering two combinations of penalty parameters: {λ1, λ2} = {0.1, 0}, {0, 0.1}.
Figure 2.16 shows the obtained θ̂, as a m×p matrix. The key difference between
the two regularization techniques and the ordinary solution without regulariza-
tion is that ℓ1 penalty shrinks the parameters associated with less important
variables to zero. Indeed, regularization based on the ℓ1 norm promotes a parsi-
monious solution, dominated by zero entries, i.e., sparse. While, regularization
based on the ℓ2 norm keeps the solution values as small as possible. We could
also combine both kinds of regularization to promote both sparsity and decrease
in the value of the parameters.

Figure 2.16: Solution of an overdetermined linear system of equations obtained using
the pseudoinverse (left), ℓ1 (center) and ℓ2 (right) regularization.

2.6.1.2. Underdetermined systems

When dealing with undetermined systems, there exists an unlimited set of po-
tential solutions that satisfy the equation Aθ = b. In such cases, the objective
is to introduce constraints that would ideally result in a single, unique solution
among the countless possibilities. Usually the optimization problem [2.20] is
reformulated as

θ̂ = argmin
θ

�
MSE (Aθ − b) + ||θ||r

�
, [2.22]

67

where the r denotes the r-norm. Once again, one could use either ℓ1 or ℓ2 norm,
or combination of them, as for the overdetermined case.

2.6.2. Regularized regression

It is now time to see how the aforementioned penalties and constraints for the
solution of under- and over-determined systems can be employed in regression.
As already mentioned, (non)linear regression deals, most of the times, with
overdetermined systems of equations – all examples we have looked up so far are
indeed characterized by n ≫ m. We should not be surprised, at this point, that
the same penalty terms that are used for the solution of overdetermined systems
have their own counterparts (and names) in regression. Regularized regression
models based on the ℓ1 and ℓ2 norms are called LASSO – Least Absolute
Shrinkage and Selection Operator Regression –, and Ridge, respectively. The
combination of both is often referred to as Elastic net.

2.6.2.1. LASSO

LASSO regression (Tibshirani 1996) is the (non)linear regression version with
a regularization term proportional to ||θ||1. This forces the learning algorithm
to not only fit the data but also to shrink the model parameters to zero. The
loss function is thus defined as

LLASSO (X, fθ) = MSE (X, fθ) + λ1||θ||1. [2.23]

Note that the above loss function is not differentiable at θ = 0, thus we cannot
derive a closed form solution analogous to the normal equation. However, we
can still use gradient descent provided that we define the following modified
gradient, whenever θ is equal to zero,

grad
�
θ, LLASSO�

= ∂

∂θ
MSE(X, fθ) + sign (θ) , [2.24]

where sign(·) is the sign function. Below, we perform LASSO regression using
Scikit-learn’s for the same example we have seen for polynomial regression (cf.
Section 2.5) and we consider polynomials of degree 100:
from sklearn.linear_model import Lasso
lambda_1 = 0.0001
lasso_reg = Lasso(alpha=lambda_1,max_iter=100000) # define lambda_1
Polynomial feature up to degree 100
poly_features = PolynomialFeatures(degree=100, include_bias=False)
lasso_reg.fit(norm_X_poly,norm_y_train) # fit LASSO reg model
norm_x_poly = poly_features.fit_transform(norm_x)
norm_y_predicted_lasso = lasso_reg.predict(norm_x_poly) # make predictions

68

The predictions are shown in Figure 2.17, left. For the sake of clarity, the plot
also shows the solution obtained without regularization (pinv). We can easily
observe that LASSO allows to rediscover the underlying function, equation
[2.18], used to generate the data, independently of the additive noise, and
without overfitting – in contrast with the ordinary regression model (pinv),
with all polynomial degrees up to 100. The reason is that LASSO shrinks
most of parameters to zero, hence we discover a quite precise series expansion
of the combination of sinusoidal functions within the range (−π, π).
For the sake of completeness, note that we could also use Scikit-learn’s
SGDRegressor with the following arguments: penalty="l1" and
alpha=lambda_1:
from sklearn.linear_model import SGDRegressor
sgd_reg = SGDRegressor(max_iter=10000,

tol=1e-6,penalty="l1",alpha=lambda_1,
eta0=0.01)

sgd_reg.fit(norm_X_poly,norm_y_train.ravel())
norm_y_predicted_sgd = sgd_reg.predict(norm_x_poly) # make predictions

2.6.2.2. Ridge

Ridge regression (Hoerl and Kennard 1970) is the (non)linear regression ver-
sion with a regularization term proportional to ||θ||22 that forces the model
parameters to be as small as possible. The loss function is defined as

LRidge (X, fθ) = MSE (X, fθ) + λ2||θ||22. [2.25]

As with linear regression – and differently from LASSO – we can perform Ridge
regression either by computing a closed-form equation (Hoerl and Kennard
1970) or by performing gradient descent. The code hereinafter implements the
closed-form solution using Scikit-learn’s Ridge:
from sklearn.linear_model import Ridge
lambda_2 = lambda_1
ridge_reg = Ridge(alpha=lambda_2,max_iter=100000) # define lambda_2
ridge_reg.fit(norm_X_poly,norm_y_train) # fit Ridge reg model
norm_y_predicted_ridge = ridge_reg.predict(norm_x_poly) # make predictions

We plot the predictions in Figure 2.17, center. Once more, thanks to regu-
larization, we are able to retrieve the original function, in contrast with the
massively overfitted linear model (pinv).

2.6.2.3. Elastic net

Elastic net is the middle version between LASSO and Ridge. Accordingly, the
regression model is regularized with respect to both the ℓ1 and ℓ2 norms. The

69

regularization term is a mix of both Ridge and LASSO’s controlled by a ratio
ϱ:

LElastic net (X, fθ) = MSE (X, fθ) + ϱλ||θ||1 + 1 − ϱ

ϱ
λ||θ||22. [2.26]

Elastic net is equivalent to Ridge if ϱ = 0 and to LASSO if ϱ = 1. Below the
code to define and fit an Elastic net model, whose predictions are shown in
Figure 2.17, right:
from sklearn.linear_model import ElasticNet
net_reg = ElasticNet(alpha=2*lambda_2,l1_ratio=1.0,

max_iter=100000) #l1_ratio = \varrho
net_reg.fit(norm_X_poly,norm_y_train) # fit Elastic Net reg model
norm_y_predicted_net = net_reg.predict(norm_x_poly) # make predictions

2.7. Challenges in generalization and extrapolation

Regression, like other supervised ML methods, is mainly design for making
predictions rather than determining existing relationships between some fea-
tures. However, by post-processing the model parameters θ, we can, under
some circumstances, grasp the underlying relationships buried under the mere
data points we are analyzing. In this sense, we may even end up (re)discovering
some laws of physics, in the form of governing equations, see e.g. (Champion
et al. 2019). For that, the obtained model needs to be interpretable – that is,
capable of explaining why data behaves in a certain manner. An interpretable

Figure 2.17: Nonlinear regression using polynomials of degree 100. Comparison be-
tween standard regression (pinv) – equation [2.10] – and regularized models: LASSO and
stochastic GD (left), Ridge (center), Elastic net (right). Features are scaled.

70

model has, in general, not only good generalization capabilities, but also good
expressive ability – extrapolation, (Kutz and Brunton 2022).

Think to the example in Section 2.5 involving data generated from a combi-
nation of trigonometric functions with additive noise. The example highlighted
that regression is actually more nuanced than simply choosing a regression
model and performing a least-square fit. The selection of the model itself is
crucial for achieving better predictions and interpretable descriptions of the
data.
In the example, we have seen that if we pick an “optimal” polynomial degree,
then we will obtain a model able to interpolate quite well the test data (cf.
Figure 2.12, left). However, if the polynomial degree is too large (or too small),
we will end up having a model that massively overfits (or underfits) the train-
ing data – that is, unable to generalize for new data points (cf. Figure 2.12,
right). The ultimate solution was to resort to regularized regression models
(e.g., LASSO). In so doing, we succeeded in identifying a good approximation
of the true (trigonometric) model hidden under the pile of noisy data (cf. Figure
2.17).

However, why a regularized regression model seems to have much more
predictive power than a straightforward nonlinear regression one, with as many
polynomials terms as we are able to count? The answer lies in Occam’s razor,
a principle of parsimony (“lex parsimoniae”) attributed to William of Occam:

“Entia non sunt multiplicanda praeter necessitatem”
i.e., “entities must not be multiplied beyond necessity.” In other words, among
different competing models that make the same predictions, the simpler one
is the more likely. This principle is extensively used in science, where simpler
explanations are preferred. An example is the method of dominant balance,
which allows to determine the asymptotic behavior of solutions to an ordinary
differential equation by identifying those terms that may be neglected in the
limit. Dominant balance is, for instance, when we consider the evolution of
shear stress in a sand sample, and we do not model neither its quantum state
nor the effects of the relativistic warping of space-time caused by the grains.
Regularized regression adheres to this principle by discouraging the inclusion
of numerous polynomial terms – or, in general, of features – thus promoting
model simplicity. In addition, regularization helps in avoiding overfitting and
results in high degree of stability. Indeed, high-dimensional polynomial models
tend to suffer from instability due to multicollinearity that occurs when two
or more independent variables have a high correlation with one another, see
Figure 2.12, right.
While some of these benefits could also be obtained with low-degree polyno-
mial models without the need of resorting to regularization, these models tend
to underfit the training data and exhibit insufficient expressive power. It is

71

also worth mentioning that successful machine learning models often exhibit
a certain degree of benign overfitting (also called overparametrization Bartlett
et al. 2020). Therefore, regularized regression models, with their ability to bal-
ance complexity and simplicity, offer significant predictive power by selecting
relevant features.

In the example involving LASSO, Ridge, and Elastic Net regression (para-
graph 2.6.2), we demonstrated the interpolating power of regularized regression
models. However, it is important to further assess their interpretability and po-
tential to provide insights for the identification and discovery of patterns and
equations hidden within data sets.

2.7.1. Interpretable models and where to find them

This application deals with the investigation of whether it is possible to discover
interpretable models (governing equations) with extrapolative power using (reg-
ularized) regression methods. In particular, we mimic virtual experiments gov-
erned by a very simple equation and consider additive noise simulating virtual
statistical errors in a hypothetical data acquisition system. The underlying gov-
erning equation is the (one-dimensional) projectile motion – i.e., the solution
of the second-order ordinary differential equation ẍ(t) + g = 0,

x(t) = x(0) + ẋ(0)t − 1
2gt2,

where x, ẋ, and ẍ are the trajectory, velocity, and acceleration of the projectile,
respectively; t is the time, and g is the gravitational acceleration. The code
hereinafter integrates the differential equation with initial conditions: x(0) = 0
m and ẋ = 5 m/s. As we are interested in making predictions within the range
of values of some training data and outside of it, we generate the data and
split them in an interpolation (xi and yi) and extrapolation (xe and ye) sets,
depicted in Figure 2.18(a):
import numpy as np
from scipy.integrate import solve_ivp
np.random.seed(42)

def projectile_motion(t, y):
equations of motion
dydt = y[1] # velocity
dvdt = -g # acceleration
return [dydt, dvdt]

Initial conditions
n_snapshots = 200
x0 = 0.0 # meters
v0 = 5.0 # meters per second
g = 9.81 # acceleration due to gravity

72

t0 = 0.0 # initial t
tf = 1.0 # final t
time points solution
t = np.linspace(t0, tf, n_snapshots)
solve ODE
sol = solve_ivp(projectile_motion, [t0, tf], [x0, v0], t_eval=t)
define independent and dependent variables
X = np.float32(t)
y = np.float32(sol.y[0])
n = n_snapshots//2
xi = X[:n] # train time
xe = X[n:2*n] # test time
yi = y[:n] # train x = [0,0.5]
ye = y[n:2*n] # test x = [0.5,1]

We continue by training a set of n polynomial regression models of degree 20.
Every model is trained against dependent variables lying between 0 and 0.5
(xi) and dependent variables (yi) with a normally distributed measurement
noise, randomly selected at each loop (fni). In a nested for loop, we store the
MSE values between the models predictions and yi for values of the indepen-
dent variables within the interpolation (mse_int) and extrapolation (mse_ext)
range.
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
from sklearn.metrics import mean_squared_error
degree = 20 # polynomial
mse_int = np.zeros((n,degree))
mse_ext = np.zeros((n,degree))
poly_features = PolynomialFeatures(degree=degree, include_bias=False)
xi_poly = poly_features.fit_transform(np.expand_dims(xi,1))
xe_poly = poly_features.fit_transform(np.expand_dims(xe,1))
for deg in range(degree):

xi_poly_ = xi_poly[:,:deg+1]
xe_poly_ = xe_poly[:,:deg+1]
for j in range(n):

fni = yi + 0.3*np.random.normal(0,1,n) # y with normal noise
lin_reg = LinearRegression() # model
lin_reg.fit(xi_poly_,fni) # fit for x in [-0.5,1]
ynai = lin_reg.predict(xi_poly_)
ynae = lin_reg.predict(xe_poly_) # fit for t in [0.5,1]
mse_int[j,deg] = mean_squared_error(yi,ynai) # MSE train
mse_ext[j,deg] = mean_squared_error(ye,ynae) # MSE val

Figure 2.18 shows the MSE of the set of models in the interpolation and extrap-
olation ranges. The results are clear: all the trained models massively overfit
the data with measurement noise and cannot generalize. When attempting to
extrapolate beyond the range observed in the training data, we are confronted
with substantial errors, as shown in Figure 2.18(c-d). The logarithmic plot in
Figure 2.18(d) illustrates the exponential growth of the error as the polynomial

73

degree increases, reaching magnitudes as high as 1010. This demonstrates the
inability of overfitted models to make predictions in the extrapolation range.
Thus, we can say that (non-regularized) polynomial regression does not offer
an interpretable model for this simple case (except an obvious second-order
polynomial).

(a)

(c)

(d)

(b)

Figure 2.18: Regression of the motion of a projectile with measurement noise (a) using
100 different nonlinear regression models with polynomial basis (degree 20). Errors for
values within the training, interpolation range (b), and outside (extrapolation) (c-d).

Let us continue by employing cross-validation to mitigate the effects of
overfitting. We also extend the set of polynomial regression models – denoted
with pinv, diminutive of pseudoinverse – with regularized ones. The code below
performs 100-fold cross-validation for the same noisy data sets for the three
different regression models (pinv, LASSO, and Ridge) and stores the obtained
parameters. Note that, as the measurement noise is randomly select for each

74

k-fold, the training data points may be considered as virtual experimental
measurements of the simplified system.
from sklearn.linear_model import Lasso,Ridge
from sklearn.model_selection import KFold
nfolds = 100
lin_reg = LinearRegression() # linear model
lasso = Lasso(alpha=3e-4) # LASSO model
ridge = Ridge(alpha=3e-4) # Ridge model
k_fold = KFold(nfolds)
initialize for storing parameters
lasso_params = np.zeros((nfolds,degree+1))
ridge_params = np.zeros((nfolds,degree+1))
lin_params = np.zeros((nfolds,degree+1))
for k, (train, test) in enumerate(k_fold.split(xi_poly, yi)):

fni = yi + 0.3*np.random.normal(0,1,n) # y with normal noise
lin_reg.fit(xi_poly[train], fni[train]) # fit lin
ridge.fit(xi_poly[train], fni[train]) # fit RIdge
lasso.fit(xi_poly[train], fni[train]) # fit LASSO
store models parameters
lin_params[k,0] = lin_reg.intercept_
lin_params[k,1:] = lin_reg.coef_
ridge_params[k,0] = ridge.intercept_
ridge_params[k,1:] = ridge.coef_
lasso_params[k,0] = lasso.intercept_
lasso_params[k,1:] = lasso.coef_

Figure 2.19 plots the values of the parameters θ obtained from the above code,
for k-th fold (k = 2, 10, and 100). Note how the parameters of the standard
regression model explode, with values of the order of 105, independently of the
number of folds. The phenomenon is intrinsic to polynomial regression which
blows up as the polynomial degree is increased and further enhanced by the
intrinsic multicollinearity of the (polynomial) features. In contrast, Ridge and
LASSO identify parameters with ranges of values comparable with underlying
equation of motion. In addition, LASSO also successfully identifies a parsimo-
nious model, with a (more or less) predominant quadratic term (depending on
the number of folds).

In order to proceed to the evaluation of the three cross-validated models,
we compute the average of the parameters obtained from the optimization
performed at each fold (cf. paragraph 2.5.1.2):
Compute models based on the mean over the 100-fold cross-validation
lin_theta = np.mean(lin_params[:,:],0)
lasso_theta = np.mean(lasso_params[:,:],0)
ridge_theta = np.mean(ridge_params[:,:],0)
Set mean params for each model
lin_reg.coef_ = lin_theta[1:]
lin_reg.intercept_ = lin_theta[0]
ridge.coef_ = ridge_theta[1:]

75

ridge.intercept_ = ridge_theta[0]
lasso.coef_ = lasso_theta[1:]
lasso.intercept_ = lasso_theta[0]
Predictions within interpolation range
fy_lin_xi = lin_reg.predict(xi_poly)
fy_la_xi = lasso.predict(xi_poly)
fy_rid_xi = ridge.predict(xi_poly)
Predictions within extrapolation range
fy_la_xe = lasso.predict(xe_poly)
fy_lin_xe = lin_reg.predict(xe_poly)
fy_rid_xe = ridge.predict(xe_poly)

Figure 2.20 compares the performances of the three models (pinv, LASSO,
Ridge) in terms of the mean squared error, while Figure 2.21 shows the predic-
tions, in the interpolation and extrapolation range. As we might have expected,
LASSO excels over all other strategies by providing a model that can interpo-
late (without overfitting) and, even, extrapolate with good accuracy. We can
also observe that Ridge performs better than the standard regression approach,
although it rapidly fails in the extrapolation range.

Figure 2.19: Values of the parameters θ obtained using standard (pinv), LASSO, and
Ridge polynomial regression for different cross-validation folds: k = 2 (left), k = 10
(center) and k = 100 (right).

76

L
as
so

R
id
ge

pi
nv

(c)(b)

×10−4

pi
nv

L
as
so R
id
ge

×106

pi
nv

L
as
so

R
id
ge

ex
tr
ap
ol
at
io
n

in
te
rp
ol
at
io
n

(a)

Figure 2.20: Errors of the cross-validated regression models: pinv, LASSO, Ridge within
the: (a) interpolation range and (b-c) extrapolation range, where (c) presents a detailed
view.

Whilst good generalization and extrapolation capabilities, LASSO has not
identified the exact underlying governing equation but just a very good ap-
proximation of it,

x̂(t) ≈ θ1t + θ2t2 + θ3t3, θ1 = 4.33, θ2 = −2.93, θ3 = 1.32.

Note that the true equation has θ1 = 5, θ2 = −4.9, and θ3 = 0. This implies
that if we ask the model to make predictions for a significantly distant time
point, i.e., t ≫ 1, the accuracy of the extrapolation will not be as good as in
the range that we considered here.

Figure 2.21: Comparison between the projectile motion equation and the predictions of
the cross-validated models: pinv, LASSO and Ridge.

77

2.8. Bayesian regression

All regression methods discussed up to this point fall under the hat of the
frequentist approaches (Wakefield 2013) as they assume that there are enough
measurements to say something meaningful about θ and provide a sigle best
estimate for a given training set. Such methods provide good models when-
ever the relationship between the independent and dependent variables is well
understood and relatively stable. However, in real case scenarios, we are often
confronted with uncertainty or variability in the data and deterministic meth-
ods are not appropriate. To this end, a powerful, alternative tool is provided
by Bayesian regression methods.

Bayesian regression is able to provide predictions in the form of probability
distributions incorporating uncertainty estimates. This Section introduces the
main ideas and novelties characterizing such methodologies as compared to
frequentist approaches by focusing on linear Bayesian regression and Gaussian
process regression. For more details, we refer to (Bishop and Nasrabadi 2006 ;
Murphy 2018).

2.8.1. Linear Bayesian regression

In simple linear regression, we aim to find the best-fit line that explains the
relationship between two variables. Linear Bayesian regression extends this
same concept by considering uncertainty in both the model parameters and
the predictions. Instead of relying on a single line (cf. Section 2.2), it thus
provides a distribution of possible lines, accounting for the uncertainty in the
data.
Linear Bayesian regression starts by assuming a linear relationship between the
independent variables X and the dependent variable y of the form

y = Xθ + ϵ, [2.27]

where θ are the model parameters and ϵ represents an error term assumed to
follow a zero-mean Gaussian distribution, ϵ ∼ N (0, σ2I), where I is the identity
matrix and σ2 is the variance.

2.8.1.1. Bayesian inference

Bayesian inference allows to infer a posterior distribution p(θ|X, y) – that of
the parameters – representing updated beliefs given the observed independent
variables X and dependent variable y. To this end, we use Bayes’ formula, i.e.,

p(θ|X, y) ∝ p(X, y|θ) p(θ), [2.28]

78

where p(θ) is the prior distribution over θ, incorporating prior beliefs about
the parameters values before observing any data, while p(y|X,θ) is the likeli-
hood function, quantifying instead the probability of observing the dependent
variable y given the independent variables X and the parameters θ.

2.8.1.2. Prior and posterior

In principle, any prior p(θ) could be used, however the functional form of most
priors, when multiplied by the functional form of the likelihood in [2.28], results
in an posterior p(θ|X, y) with no closed-form solution.
In such scenarios, the solution is to resort to approximate Bayesian inference
techniques as Monte Carlo methods. But, certain priors are mathematically
convenient because they result in posteriors with tractable, well-known densi-
ties.

The simplest and most widely used version of linear Bayesian regression
is the normal linear model, in which y given X – p(X, y|θ) – is distributed
Gaussian. In this model, and under a particular choice of the prior for the
parameters – namely, when the prior is conjugate, meaning that the prior
and posterior share the same functional form – the posterior can be found
analytically. With more arbitrarily chosen priors, the posteriors generally have
to be approximated.

2.8.1.3. Posterior predictive

Once we have computed the posterior distribution p(θ|X, y), we can make
predictions for new, unseen data points. One common approach is to generate
posterior predictive samples by drawing parameter values from the posterior
distribution and using them to make predictions (Bishop and Nasrabadi 2006).

2.8.1.4. Example

Let us consider an intuitive example drawn from (Bishop and Nasrabadi 2006)
and implemented as in gwgundersen/bayesian-linear-regression. We start
by generating 50 snapshots of the independent and dependent variables, accord-
ing to

y = θ1x + θ0,

where θ1 = 0.5 and the bias is θ0 = −0.7. Then, we perform Bayesian linear
regression using as prior a normal-inverse-gamma distribution and consider an
increasing number of observations in the training data set.

Figure 2.22 depicts the evolution of the prior and posterior distributions of
the parameters θ (left column) and six random posterior samples drawn from
the vector θ = [θ0, θ1]T (right column). In the top row, the model has seen no
data. The prior places high and equal probability on both θ0 and θ1 being zero.

79

In the subsequent rows, the model is fit to more data. With more observations,
the model inferred posterior variance decreases, and the realizations of θ from
the posterior become more constrained and in agreement with the observed
data.

prior/posterior data space
ob

se
rv

at
io

ns
: 1

ob
se

rv
at

io
ns

: 0
ob

se
rv

at
io

ns
: 5

ob
se

rv
at

io
ns

: 5
0

Figure 2.22: Evolution of the prior and posterior distributions of the parameters θ (left
column) and random samples of the vector θ = [θ0, θ1]T (right column) at varying of the
number of observation (rows).

80

2.8.2. Gaussian process regression

Before discussing about Gaussian process regression, it is important to dis-
tinguish parametric from nonparametric models and recall the definition of a
Gaussian process.

2.8.2.0.1. Parametric versus nonparametric model

Parametric models are all those regression models we have seen so far. More
formally, parametric models assume a well-defined functional relationship be-
tween dependent and independent variables and that the distribution of the
data can be entirely defined in terms of a finite set of parameters θ. Thus, once
we have trained a parametric model, every future prediction is independent of
the particular set of new data for which we are making predictions.
Nonparametric models do not prescribe any predetermined functional relation-
ship (or hypothesis fθ) between the dependent and independent variables (Har-
dle and Mammen 1993). Nonparametric models thus have the freedom to calcu-
late the probability distribution over all admissible functions that fit the data,
rather than, for instance, calculating the probability distribution of parame-
ters of a specific function (cf. linear Bayesian regression). However, even in
nonparametric models, we must specify a prior (on the function space), calcu-
late the posterior using the training data, and compute the predictive posterior
distribution on the points of interest.

2.8.2.0.2. Gaussian process

A Gaussian process (GP) is a collection of random variables, any finite number
of which has a joint Gaussian distribution. In the context of regression, we
can think of a GP as an infinite-dimensional generalization of a multivariate
Gaussian distribution. Instead of representing a mean vector and a covariance
matrix, a GP is fully characterized by a mean function, denoted as µ(x), and
a covariance function, also known as the kernel function, denoted as k(x, x),
describing the relationship between any given two data points xi and xj , for
i, j = 1, 2, · · · , m.

2.8.2.1. Inference

Gaussian process regression (GPR) is a nonparametric, Bayesian regression
method. In particular, GPR uses a Gaussian process prior to infer the distri-
bution of possible functions that could generate the observed data.
To fix the ideas, consider a set of training data {X, y} ≡ {(x(i), y(i))}n

i=1, the
objective is to estimate the function f(X) that minimizes y−f(X) = 0 by plac-
ing a Gaussian process over it. Typically, a mean of zero is assumed, leading
to the following distribution

y = f(X) ∼ N (0, K), [2.29]

81

where K ≡ k(X, X) denotes the covariance matrix generated by the kernel
function k chosen (e.g. periodic, linear, radial basis function) and describes the
general shape of f(·). Note that the choice of the kernel is crucial in identifying
a good (or a bad) fit of the data.

To predict the values of a new set of dependent variables y∗, given a new set
of independent variables X∗, we need to estimate the conditional distribution
p(y∗|X∗, X). According to the properties of GP (Murphy 2018), the joint dis-
tribution of the training and test outputs follows a joint Gaussian distribution:

�
y
y∗

�
= f

��
x
x∗

��
∼ N

�
0,

�
K K∗

KT
∗ K∗∗

��
, [2.30]

where K∗ ≡ k(X, x∗), K∗∗ ≡ k(x∗, x∗). While the above joint distribution
gives some insight as to how f(x∗) relates to f(x), at this point no prediction
for the new datum x∗ is made.
To obtain the posterior distribution of the predicted GP realizations f(x∗),
we condition the prior distribution on the training data (Murphy 2018). This
leads to the following mean and covariance predictions for the test point x∗
(see Murphy 2018, for the detailed derivation):

µ
�
f(x∗)

�
= KT

∗ K−1y, [2.31a]

Cov
�
f(x∗)

�
= K∗∗ − K∗K−1KT

∗ . [2.31b]

These equations provide the mean and covariance predictions for the output
f(x∗) given the training data set and a new input x∗.

2.8.2.2. Inference in the presence of noise

In real-world scenarios, we often encounter observations with measurement
noise. In such scenarios, it is more appropriate to model the training targets y
to be noisy realizations of a Gaussian process f(X),

y = f(X) ∼ N (0, K) + ϵ, ϵ ∼ N (0, σ2), [2.32]

where the noise ϵ is parameterized by a zero-mean Gaussian with positive noise
covariance values given by σ2, which is a hyperparameter.

By repeating the steps above, we obtain the following joint distribution of
the training and new outputs

f

��
x
x∗

��
∼ N

�
0,

�
K + σ2I K∗

KT
∗ K∗∗

��
. [2.33]

82

As before, but now with the noise term, we can obtain the predictive mean and
variance, given by

µ
�
f(x∗)

�
= KT

∗
�
K + σ2I

�−1 y, [2.34a]

Cov
�
f(x∗)

�
= K∗∗ − K∗

�
K + σ2I

�−1 KT
∗ + σ2. [2.34b]

2.8.2.3. Example

Let us see how we can perform GRP using Scikit-learn. We consider the same
polynomial regression example in Section 2.5, with data generated from a com-
bination of trigonometric functions with random additive noise. In the code
hereinafter, we first fit a Gaussian process on the training data using a ra-
dial basis function (RBF) kernel and, additionally, a noise parameter (alpha).
Then, we use the kernel to compute the mean predictions (norm_y_mean) for the
train and test set and plot the 95% confidence interval (defined as norm_y_mean
±1.96 norm_y_std).

from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import RBF
define a radial basis function kernel
kernel = 1 * RBF(length_scale=1.0, length_scale_bounds=(0.001, 10)) #
GPR = GaussianProcessRegressor(kernel=kernel,

alpha=0.5**2) # noise term
GPR.fit(norm_X_train, norm_y_train) # find mean and covariance matrix
posterior distribution
norm_y_mean, norm_y_std = GPR.predict(norm_x, return_std=True) # see par. 5.1

The predictions are depicted in Figure 2.23 and compared with the training
and test data. Not only the fit in terms of the expected (mean) value is ex-
tremely good, but in addition, due to the intrinsic probabilistic nature of GPR,
we are also able to compute confidence intervals and thus quantify uncertain-
ties.

Figure 2.23: Gaussian process regression (with noise) for data generated from a combi-
nation of trigonometric functions with random additive noise, see paragraph 2.5.1: pre-
dictions and 95% confidence interval.

83

In summary, we have seen that Bayesian regression methods offer unique
advantages as compared to classical, frequentist ones as far it concerns uncer-
tainty estimation. However, there exist some drawbacks associated with the
former. First, both linear Bayesian and Gaussian process regression have high
computational complexity – higher than that of deterministic methods – and
may be computationally expensive, especially when dealing with large data sets
and not only at training but also at inference. Second, we have seen that deter-
ministic regression methods allow to identify interpretable models that directly
relate to the impact of each parameter on the dependent variable predictions
– especially in the case of regularized strategies (cf. Section 2.7). However,
this is not usually true for linear Bayesian and Gaussian process regression:
indeed, the parameters are expressed in the form of posterior distributions or
covariance matrices and their interpretation can be quite challenging.

2.9. Conclusions

This Chapter provided a comprehensive introduction to regression methods,
which serve as one of the foundational pillars of Machine Learning, together
with classification methods (cf. Chapters 1 and 4).

We covered linear and nonlinear regression models and their Bayesian coun-
terparts in Sections 2.2, 2.5, and 2.8, respectively. Together, such statistical
tools allow to identify relationships between inputs and outputs and deliver
predictive models. To do so, the starting point consists of defining a hypoth-
esis – in linear and nonlinear regression – or a kernel – in Gaussian process
regression. Then, the process continues with the identification of the hypoth-
esis parameters – in the form of fixed values or posterior distributions – or
functionals, obtained through optimization strategies (gradient descent) or as
closed-form solutions, to finally obtain a predictive model through learning
from a training data set.

We also introduced concepts and strategies related to model validation and
generalization, as well as features scaling (cf. Section 2.4). These are extremely
important and useful not only for regression methods but, in general, for any
Machine Learning approach – e.g., classification methods, artificial neural net-
works, and dimensionality reduction techniques.

Then, we emphasized the significance of regularization, particularly in the
context of nonlinear regression (cf. Section 2.6). Regularization techniques play
a crucial role in preventing overfitting, where the model becomes too complex
and fits noise or irrelevant patterns, leading to poor generalization. Note that
regularization strategies go well beyond regression models and are a good ally

84

for enhancing the performance and generalization abilities of Machine Learn-
ing models. Additionally, regularization facilitates the identification of inter-
pretable models by promoting simplicity and a small number of dominant pa-
rameters. Interpretable models have the potential to reveal hidden physical
relationships or equations that may be obscured within vast amounts of data
(cf. Section 2.7).

However, we should pay attention in understanding the limitations of (non)
regularized regression models when addressing complex phenomena. For in-
stance, if we were asked to predict occurrences and magnitudes of earthquakes
and landslides or characterize the constitutive behavior of intricate materials
like sand or clay, the interpretable, but simplistic, approach developed in the
case of the projectile motion (cf. paragraph 2.7.1) will not be quite effective.
The reason lies in challenges proper to the above scenarios and related to an
intrinsic chaotic nature and a high-dimensional state space.
Every time we are confronted with the forecasting of a complex phenomenon
or the description of an intricate system achieving reliable generalization and
extrapolation performance becomes increasingly arduous when relying solely
on Machine Learning approaches that lack any knowledge bias. And this even
in the case of sophisticated neural networks that use regularization strategies
(cf. Chapter 5). To address such challenges, it becomes imperative to resort
to physics-informed and thermodynamics-based machine learning models (as
explored in Chapters 2 and 3, vol. II) or leverage data-driven computing ap-
proaches (presented in Chapter 1, vol. II). These alternative methodologies
incorporate domain knowledge and physical principles into the learning pro-
cess, resulting in more robust and accurate predictions.

2.10. Bibliography

Bartlett, P. L., Long, P. M., Lugosi, G., Tsigler, A. (2020), Benign overfit-
ting in linear regression, Proceedings of the National Academy of Sciences,
117(48), 30063–30070.

Bishop, C. M., Nasrabadi, N. M. (2006), Pattern recognition and machine learn-
ing, vol. 4, Springer.

Boyd, S. P., Vandenberghe, L. (2004), Convex optimization, Cambridge uni-
versity press.

Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O.,
Niculae, V., Prettenhofer, P., Gramfort, A., Grobler, J., Layton, R., Vander-
Plas, J., Joly, A., Holt, B., Varoquaux, G. (2013), API design for machine
learning software: experiences from the scikit-learn project, in ECML PKDD
Workshop: Languages for Data Mining and Machine Learning, pp. 108–122.

85

Champion, K., Lusch, B., Kutz, J. N., Brunton, S. L. (2019), Data-driven
discovery of coordinates and governing equations, Proceedings of the National
Academy of Sciences, 116(45), 22445–22451.

Gentle, J. E. (2012), Numerical linear algebra for applications in statistics,
Springer Science & Business Media.

Géron, A. (2022), Hands-on machine learning with Scikit-Learn, Keras, and
TensorFlow, " O’Reilly Media, Inc.".

Hardle, W., Mammen, E. (1993), Comparing nonparametric versus parametric
regression fits, The Annals of Statistics, pp. 1926–1947.

Hoerl, A. E., Kennard, R. W. (1970), Ridge regression: Biased estimation for
nonorthogonal problems, Technometrics, 12(1), 55–67.

Jiang, Y., Neyshabur, B., Mobahi, H., Krishnan, D., Bengio, S. (2019),
Fantastic generalization measures and where to find them, arXiv preprint
arXiv:1912.02178, .

Kutz, J. N., Brunton, S. L. (2022), Parsimony as the ultimate regularizer for
physics-informed machine learning, Nonlinear Dynamics, 107(3), 1801–1817.

Mandel, J. (1982), Use of the singular value decomposition in regression anal-
ysis, The American Statistician, 36(1), 15–24.

Murphy, K. P. (2018), ‘Machine learning: A probabilistic perspective (adaptive
computation and machine learning series)’.

Tibshirani, R. (1996), Regression shrinkage and selection via the lasso, Journal
of the Royal Statistical Society: Series B (Methodological), 58(1), 267–288.

Wakefield, J. (2013), Bayesian and frequentist regression methods, vol. 23,
Springer.

Wichtmann, T., Triantafyllidis, T. (2016), An experimental database for the
development, calibration and verification of constitutive models for sand with
focus to cyclic loading: part i–tests with monotonic loading and stress cycles,
Acta Geotechnica, 11, 739–761.

86

