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3.1. Introduction

Fuelled by a continuously increasing flow of data, Machine Learning (ML) has
been offering promising solutions to diverse problems in a broad spectrum of
disciplines. As a result, science has experienced a shift of paradigm, where
data are no longer confined to a mere supporting role, but have instead taken
center stage as main protagonists in the scientific narrative. This transformative
shift can be considered as the advent of a “fourth paradigm” (Hey et al. 2009),
which coexists with and complements the three traditional scientific paradigms:
experimental, theoretical, and computational.

Within such a context, the quest for accurate and predictive data-intensive
(or data-centric) models has received and continues to receive enormous at-
tention. Such models are often characterized by complex, highly specialized
algorithms, e.g. deep neural networks, with numerous interconnected parame-
ters that are optimized to learn those patterns and those correlations proper to
a training data set. However, while data-intensive models may fit observations
well, many of them face limitations in extracting interpretable information and
knowledge from vast amounts of data. In addition, they can suffer from physical
inconsistencies and poor generalization (Karniadakis et al. 2021). Consistency
refers here to the fulfilment of laws of physics and thermodynamics. General-
ization refers to the ability of making predictions for data that do not belong
to the particular data set used in the learning process (cf. Chapter 2).

To address these challenges, there has been a surging desire, in the last
four-to-five years, to switch the focus from a pure data-centric vision towards
a hybrid one that also accounts for first principles – namely, physics and ther-
modynamics. That is, leverage the high expressivity (i.e. approximation prop-
erties) of ML models but also embed prior knowledge stemming from our phys-
ical understanding of the world in order to reach improved performance, reli-
ability, and interpretability. This gave birth to numerous successful methods,
sometimes referred to as physics-informed machine learning.1 These approaches
enable the enforcement of prior knowledge through the introduction of appro-
priate observational, inductive, and learning biases (Karniadakis et al. 2021).
Observational biases use data augmentation procedures by leveraging physical
principles that dictate the generation of the latter2 (Lu et al. 2021). Inductive
biases resort to the design of specialized neural network architectures that,

1. There seems to be no strong consensus on the definition of ML models leveraging
prior knowledge, mainly due to the fact that this is a very fast moving field. In this
Chapter, we follow the broad definition suggested in (Karniadakis et al. 2021). Note
that this is not the sole possibility, of course.
2. For instance, augment the data by leveraging frame indifference and symmetries.
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by construction, embed prior assumptions or physical models, e.g. (Hernandez
et al. 2021 ; Masi et al. 2021). Learning biases consists of introducing physical
constraints, rather than via specialized architectures, in a soft manner, by ap-
propriately penalizing the loss functions of conventional neural networks, e.g.
(Raissi et al. 2019). For more, we refer to (Karniadakis et al. 2021).

In this Chapter, we focus on two emblematic examples of physics-informed
machine learning. The first one consists of the seminal work carried out by
Raissi, Perdikaris, and Karniadakis on “Physics-Informed Neural Networks”
(PINN) (Raissi et al. 2019). PINN are a class of supervised deep learning algo-
rithms capable of encoding, through learning biases, physical laws that govern
a given data set. The second example is provided by “Thermodynamics-based
Artificial Neural Networks” (TANN Masi et al. 2021), that, through the hard-
wiring of the laws of thermodynamics within the architecture of neural networks
(inductive and learning bias), enable the discovery of constitutive equations of
complex materials.

After studying this Chapter, we hope that the reader will be able to
– Grasp the limitations of machine learning in providing reliable and accu-

rate descriptions of physical phenomena and, at the same time, the need for
developing ML approaches accounting for physics/thermodynamics principles.

– Understand, by means of hands-on and pedagogic examples, how to in-
troduce physical knowledge in the form of learning biases (e.g. PINN) and in-
ductive biases (e.g. TANN) to construct high-fidelity physical representations
from data.

The codes of the hands-on example and this Chapter are available on
ALERT Geomaterials GitHub (repository
github.com/alert-geomaterials/2023-doctoral-school), while those
related to TANN can be found at
github.com/filippo-masi/TANN-multiscale and
github.com/filippo-masi/Thermodynamics-Neural-Networks.

Below, we adopt the following notation: a · b = aibi, P : Ḟ = PijḞij , and
divy = ∂yi

∂xj
, with x the spatial coordinates, i, j = 1, 2, 3. Einstein’s summation

is implied for repeated indices.

3.2. Physics-informed neural networks

Physics-Informed Neural Networks (PINN) are a class of supervised deep learn-
ing algorithms capable of encoding physical laws governing given data sets
whose evolution can be described by partial differential equations. The setting
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considers parametrized and nonlinear partial differential equations (PDE) of
the form

u̇ + Nγ [u] = 0, [3.1]

where u = û(x, t) is the latent (hidden) solution and u̇ its partial derivative
with respect to time – the superposed caret in û serves to distinguish the
solution from its values, Nγ [ · ] is a nonlinear differential operator parametrized
by γ, with x ∈ Ω ⊂ ℝn the spatial coordinates and t the time coordinate.
Note that expression [3.1] encapsulates a wide range of problems in physics
including conservation laws, diffusion processes, advection-diffusion-reaction
systems, and kinetic equations. For instance, the heat transfer equation3 can
be retrieved by selecting Nγ [u] = γ∆u, where ∆· denotes the Laplacian.

3.2.1. Methodology

By leveraging the high expressivity of neural networks and prescribed physical
equations during the learning process – by means of learning biases – PINN
provide a powerful and general framework, driven by data, to (i) discover
solutions of PDE and (ii) the underlying differential equations, by leveraging
expression [3.1].

3.2.1.1. Solution of partial differential equations

The data-driven solution of PDE aims at finding an approximation of û such
that [3.1] holds true for fixed model parameters γ, by means of a deep neural
network uθ, parametrized with respect to the network parameters θ – that is,
the set of weights and biases of each layer (see Chapter 5, vol. I). In so doing,
the expression [3.1] is reformulated as

ϱ(x, t) ≡ u̇θ + N [uθ], [3.2]

where ϱ(x, t) is a residual. The residual is computed by applying the chain rule
for differentiating compositions of functions using automatic differentiation (cf.
Baydin et al. 2018, and Chapter 5, vol. I), see Figure 3.1. The learning process
consists of the minimization of a loss function composed of a purely data-driven
term and a physics-based one, namely

L = λuLu + λPDELPDE, [3.3]

3. u̇ = α∆u, where α is the thermal diffusivity.
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where λu and λPDE are weighting parameters that can be tuned to balance
the interplay between the two losses. Lu and LPDE are, respectively, a super-
vised loss related to the (data) measurements u from the initial and boundary
conditions and an unsupervised loss of the PDE, namely

Lu = 1
Nu

NuX

i=1

uθ

�
x(i), t(i)

�
− u(i)

 [3.4a]

LPDE = 1
NPDE

NPDEX

k=1

ϱ
�
x(k), t(k)

� , [3.4b]

∥ · ∥ being a metric based on an arbitrary norm (cf. Chapter 2, vol. I). Here
{(x(i), t(i))} denote the initial and boundary training data on û(x, t), while
{(x(k), t(k))} specify the set of collocation points sampled in the entire domain
for ϱ(x, t).

partial differential equation

= 0

Figure 3.1: Schematic representation of PINN.

3.2.1.2. Discovery of partial differential equations

In the presence of noisy and incomplete measurements of the state of the sys-
tem, PINN can be deployed for the data-driven discovery of PDE by means a
of neural network uθ and learning model parameters γ that best describe the
measurement data. In so doing, expression [3.1] is reformulated as

ϱ(x, t) ≡ u̇θ + Nγ [uθ]. [3.5]

Exactly as for the discovery of the solution of PDE, the network is trained over
the minimization of the loss [3.3], where the unknown parameters γ are part of
the optimization problem.

While there is no theoretical guarantee of convergence to a global minimum
of the loss function [3.3], many benchmarks and applications (e.g. Raissi et al.
2019) demonstrated that PINN can achieve accurate predictions when applied
to well-posed PDE with unique solutions, both in terms of data-driven discov-
ery of solutions and of PDE. PINN are nowadays used to solve not only partial
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differential equations, but also fractional equations, integral-differential equa-
tions, and stochastic PDE (see Cuomo et al. 2022, for an extensive review).
The underlying success depends on accounting for physical biases, employing
a sufficiently expressive neural network architecture, and an adequate number
of collocation points (NPDE) – being the sampling choice a crucial aspect, cf.
(Leiteritz and Pflüger 2021).

3.2.2. Hands-on example

Let us consider as an example the (one-dimensional) motion of a projectile,
governed by the ordinary differential equation (ODE) ü(t) + g = 0, that has
the following general solution

u(t) = u(0) + u̇(0)t − 1
2gt2,

where u, u̇, and ü are the trajectory, velocity, and acceleration of the projectile,
respectively; t is the time, and g is the gravitational acceleration.
This example should ring a bell to those who read Chapter 2, vol. I, on regres-
sion methods. There, we considered exactly the same problem but addressed
it with regularized polynomial regression. Here, we aim at learning the same
governing equation but instead using traditional artificial neural networks and
physics-informed ones.
We proceed by reusing the data set generated in Chapter 2, vol. I, Section 7,
and add a Gaussian measurement noise on the data representing the trajectory,
u(i) – following the formalism introduced above. To this end, we use the code
hereinafter:

t_i = X[0:50:2].copy() # from Chapter 2, vol. I, Sect. 7
u_i = y[0:50:2].copy() # from Chapter 2, vol. I, Sect. 7
u_i += 0.1 * np.multiply(np.random.normal(0,1,25), u_i) # add noise
u_i[0] = 0.0 # noise-free initial condition
t_i = torch.tensor(t_i)[:,None] # expand dim
u_i = torch.tensor(u_i)[:,None] # expand dim

Figure 3.2 displays the exact solution of the ODE for t ∈ [0, 1] s and the noisy
data measurements u(i) used for training, t ∈ [0, 0.5] s.

Then, we continue by defining a neural network (in PyTorch), that we will
train (i) in the traditional way and (ii) following the general setting provided by
PINN. The code below serves to construct a general neural network architecture
with inputs of dimension i_dim, outputs of dimension o_dim, hidden layers with
h_dim nodes, and Tanh activations:
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Figure 3.2: Projectile motion: exact solution of the ordinary differential equation
ü + g = 0 and noisy data measurements u(i) used for training, t ∈ [0, 0.5] s.

import numpy as np
import torch
torch.manual_seed(123)
np.random.seed(123)
class NeuralNet(torch.nn.Module):

'''Feed-forward neural network'''
def __init__(self,hyper_params,dtype=torch.float32):

super(NeuralNet, self).__init__()
self.dtype = dtype
self.NN = self.constructor(hyper_params) # neural net
self.gamma = torch.nn.Parameter(torch.tensor(1.)) # gamma in PINN

def constructor(self, hyper_params):
'''Construct neural net'''
i_dim,o_dim,h_dim = hyper_params
dim = i_dim
layers = torch.nn.Sequential()
for hdim in h_dim:

layers.append(torch.nn.Linear(dim, hdim, dtype=self.dtype))
layers.append(torch.nn.Tanh())
dim = hdim

layers.append(torch.nn.Linear(dim, o_dim, dtype=self.dtype))
return layers

def forward(self, x):
'''Forward pass'''
return self.NN(x)

In order to train the neural network, without any learning bias, we proceed as
it follows:
dtype=torch.float32
NN_params = [1,1,[12,12]] # [i_dim, o_dim, [h_dim, ...]]
model = NeuralNet(NN_params,dtype) # build neural net
optimizer = torch.optim.Adam(model.parameters(),lr=1e-2) # Adam optimizer
verbose_training = 1000 # display loss
n_epochs = 10000 # number of epochs
for i in range(n_epochs):

optimizer.zero_grad()
u_i_pred = model(t_i) # make predictions
MSE_u = torch.mean((u_i_pred-u_i)**2) # MSE_u
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MSE_u.backward() # backpropagate loss
optimizer.step()
if i % verbose_training == 0:

print('epoch:{:5.0f} '.format(i),
'- train_loss:{:8.6f} '.format(MSE_u.item()))

Note that the architecture is composed of two hidden layers, with 12 nodes
each. The evolution of the predictions of the network, at varying of the number
of epochs, is shown in Figure 3.3(a). Without any surprise, the neural network
(progressively) massively overfits the training data, and the associated noise.
As a result, it cannot neither generalize nor extrapolate. Indeed, we can notice
that the predicted “projectile” seems to find itself amidst a tempestuous whirl-
wind, in the training range (t ∈ [0, 0.5] s), while it magically levitates, defying
common sense and the laws of physics (i.e., gravity), in the extrapolation range
(t > 0.5 s).

Let us see, at this point, what happens if we insert prior knowledge based on
physics. We train the PINN analog of the same neural network and in order to
discover the underlying governing equation, we assume the following physical
model:

ϱ(t) ≡ üθ + γ,

where γ is a trainable parameter – in the code snippet above,
NeuralNet.gamma. Reformulating, we are telling the network that the second
order derivative of the solution is equal to an undetermined constant, that the
network will eventually identify.
During the learning process, we sample uniformly distributed time
(collocation) points t(k) ∈ [0, 1] s. Automatic differentiation is used to
compute üθ relying on PyTorch’s functionality torch.autograd.grad():
t_k = torch.linspace(0,1,20).view(-1,1).requires_grad_(True) # collocation pt
model = NeuralNet(NN_params,dtype) # build PINN
optimizer = torch.optim.Adam(model.parameters(),lr=1e-2) # Adam optimizer
verbose_training = 1000 # display loss
n_epochs = 10000 # number of epochs
lambda_PDE = 0.2 # weighting parameter
for i in range(n_epochs):

optimizer.zero_grad()
u_i_pred = model(t_i) # make predictions for ti
MSE_u = torch.mean((u_i_pred-u_i)**2) # MSE_u
u_k_pred = model(t_k) # make predictions for tk
dudt = torch.autograd.grad(u_k_pred, t_k, torch.ones_like(u_k_pred),
create_graph=True)[0] # computes du/dt
dduddt = torch.autograd.grad(dudt, t_k, torch.ones_like(dudt),
create_graph=True)[0]# computes d^2u/dt^2
physics = dduddt+model.gamma # computes the residual
MSE_PDE = lambda_PDE*torch.mean(physics**2) # MSE_PDE
loss = MSE_u + MSE_PDE # add two loss terms together
loss.backward() # backpropagate joint loss
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optimizer.step()
if i % verbose_training == 0:

print('epoch:{:5.0f} '.format(i),
'- train_loss:{:8.6f} '.format(MSE_u.item()))

Figure 3.3(b) displays the evolution of the predictions of the physics-informed
network, as the training advances: much better, isn’t it?
Thanks to the (physical) learning bias we introduced, the physics-informed
network not only possesses good generalization capabilities, but is also able
to extrapolate4 with high accuracy. By evaluating, at the end of the learning
process, the γ parameter, we can indeed notice that the network finds a good
approximation of the gravitational acceleration, namely gamma = 10.58 m/s2.

Before concluding this example, it is worth drawing an interesting analogy
between the addition of physical biases and regularization strategies in ML.
In particular, we have seen in Chapter 2, vol. I, how regularized regression
models based on the minimization of the ℓ1 and ℓ2 norm can provide similar
accuracies compared to the physics-informed neural network we have deployed
for predicting the projectile motion. It is important to understand that such a
similarity is not simply a coincidence.
To fix the ideas, let us evaluate, in Figure 3.4, the evolution of the ℓ1 and
ℓ2 norms of the parameters of the traditional neural network and its physics-
informed sibling. The latter is characterized by a much smaller norm compared
to the traditional neural network – with a 70% decrease. This means that
the physical bias acts as a sort of regularizer, shrinking the value of most of
the network parameters θ to zero. The opposite is also true: the benefits of
regularization techniques lie in the fact that they enable the discovery of simple
models – which, most of the time, are more physical than very sophisticated
ones. In an essence, both techniques (physics and regularization) allow for the
implementation of a “lex parsimoniae” (see Chapter 2, vol. I, and Kutz and
Brunton 2022).

3.3. Thermodynamics-based neural networks

Accurate models for the behavior of materials are of fundamental importance
in material science and (geo-)mechanics. However, heuristic constitutive mod-
els, traditionally derived from first principles (thermodynamics) and empirical

4. A disclaimer is necessary concerning the capability of the trained PINN model to
extrapolate. In general, there is no guarantee, as for all ML models, that the network
enables extrapolation. In this example, extrapolation in the domain t ∈ [0, 1] s is
made possible thanks to the adopted sampling strategy for the collocation points, i.e.
t(k) ∈ [0, 1] s.
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(a) (b)

Figure 3.3: Learning the projectile motion from noisy measurement data using a tradi-
tional neural network (NN) (a) and a physics-informed neural network (PINN) (b).

100 101 102 103 104

epochs (-)

0.0

0.2

0.4

0.6

0.8

1.0

� 1
,�

2
no

rm

NN �2

PINN �2

NN �1

PINN �1

Figure 3.4: Evolution, at training, of the ℓ1 and ℓ2 norm (scaled with respect to the
maximum value) of the neural network parameters with and without learning biases based
on physics, respectively PINN and NN.

approaches (to ensure calibration over experiments), can hardly describe the
behavior of all complex materials that display path-dependency and possess
multiple inherent scales. In such contexts, multiscale approaches are commonly
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preferred as they enable to capture the effects of the fine material scales (here
denoted with microstructure) on the average (macroscopic) behavior. However,
the bottleneck of these approaches lies in the cumbersome and time-consuming
ways with which the auxiliary problem is being solved which eventually hinders
their application in real-case scenarios.

In recent years, ML, particularly deep learning, has been offering new ways
to reduce the computational burden of multiscale approaches. Indeed, taking
advantage of the high expressivity of neural networks (see Chapter 5, vol. I),
deep learning can enable the modeling of several aspects of the behavior of
complex materials and show promise in building high-fidelity replicas or digital
twins.5.
Yet, constitutive modeling based on neural networks has been facing two ma-
jor issues – inconsistency and poor generalization, cf. Section 3.1 – that hin-
der the applicability of classical “black-box” (i.e., physics-agnostic) approaches
(Ghaboussi and Sidarta 1998 ; Lefik and Schrefler 2003 ; Lefik et al. 2009).

To this end, new developments were recently proposed to tackle the lack of
physical consistency in neural networks and the consequent constitutive mod-
els. In particular, it has been demonstrated that is possible to structure neural
networks in a way that they deliver, though inductive and learning biases (cf.
Section 3.1), thermodynamics-/physics-consistent constitutive representations,
(see e.g. Hernandez et al. 2021 ; Yin et al. 2022 ; Klein et al. 2022). Among these
approaches, the Thermodynamics-based Artificial Neural Networks (TANN,
Masi et al. 2021 ; Masi and Stefanou 2022, 2023), based on the theory of inter-
nal state variables, are able to uncover constitutive equations from the laws of
thermodynamics. As a direct consequence of the thermodynamically-consistent
architecture, TANN deliver accurate predictions of the material behavior and
show remarkable generalization abilities in presence of unseen loading paths,
both within the range of the training set (interpolation) and outside (extrapo-
lation).

5. Let us define the concepts of virtual and digital twins We do so by adopting the
definitions proposed in (Chinesta et al. 2020). A virtual twin refers to the emulation
of a physical system by one or more mathematical models that describe the behavior
of the former. To fix the ideas, numerical models, such the Finite Element Method
(FEM) or the Discrete Element Method (DEM), are examples of virtual twins. A
digital twin – term originally coined by General Electric to depict the digital replica
of an engine produced in their manufacturing facilities – is a data-intensive repre-
sentation (or model) of the same physical system. As opposite to its virtual siblings,
digital twins are usually characterized by reduced computational complexity and can
be deployed for real-time decision-making.
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Herein, we focus on presenting the methodology and the underlying theo-
retical framework of TANN. Through a pedagogical example, we illustrate how
thermodynamics-based neural networks enable to construct accurate, robust,
and reliable digital twins/replicas of granular media. This approach not only
captures the overall macroscopic material behavior but also allows to discover
the (hidden) internal variables and to characterize the time evolution of the mi-
crostructure at extremely reduced computational cost. Finally, we demonstrate
how to deploy the same framework for speeding-up state-of-the-art multi- and
fine-scale simulations.

3.3.1. Theoretical framework

We start by briefly recalling the general continuum thermodynamic setting.
The local form of the energy balance and dissipation rate inequality, at the
level of an arbitrary unit volume element6 V and with respect to the reference
configuration, read

ė + divq = P : Ḟ + r, [3.6]

d̄ = η̇ −
�
T −1r − div

�
T −1q

��
≥ 0, [3.7]

where e and ė are the volume density of the internal energy and its local time
derivative; P is the first Piola-Kirchhoff stress tensor; F is the deformation
gradient and Ḟ its rate of change; q is the heat flux vector; r is the volume
density of possible external source terms; d̄ is the volume density of the total
(mechanical plus thermal) dissipation rate; η the volume density of entropy;
and T the absolute temperature. Note that all above quantities are functions
of the time t, i.e., F ≡ F (t), but for the sake of simplicity, we voluntarily
omitted, and continue to do so, such explicit way of writing.
From the combination of the above two expressions – that is, the first and
second law of thermodynamics – we obtain the Clausius-Duhem inequality,
namely

d̄ = P : Ḟ − ė + T η̇ − T −1q · m [3.8a]

= P : Ḟ −
�
ψ̇ + Ṫη

�
− T −1q · m ≥ 0 [3.8b]

6. The notion of unit volume element or unit cell, stems from considerations related
to the mathematical theory of asymptotic homogenization. All quantities of interest,
except when explicitly written, are herein expressed in the form of volume averages,
e.g. ψ = 1/|V|

R
V ψ(x) dx, where x ∈ V are the spatial coordinates and |V| is the

volume. For more, we refer to (Miehe 2002 ; Masi and Stefanou 2022).
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the latter involving the Helmholtz free energy density (per unit volume),
ψ = e − Ts, and denoting with m the temperature gradient. Whenever
m = 0, the Clausius-Duhem inequality becomes

d = P : Ḟ − ψ̇ − Ṫη ≥ 0, [3.9]

which has to hold at each time t, and where d is the internal (i.e., mechanical)
dissipation rate.

Relying on the aforementioned expression, we derive constitutive restrictions
on material processes. In particular, we follow the seminal work of Coleman and
Gurtin (1967) and introduce the internal state variables zj , with j = 1, 2, . . . , nz

– where nz is the number of internal state variables. Note that the internal
state variables or, internal variables for short, are introduced to account for
the influence of (dissipative) micromechanisms on the constitutive behavior of
materials. At this point, we continue by assuming the free energy density as a
function of the internal variables and the state variables, F and T – that is,

ψ = ψ̂ (T,F ,z) , [3.10]

where the superposed caret in ψ̂ serves to distinguish the free energy function
from its values and z denotes the internal state vector z = (z1, z2, . . . , znz ).
Notice that, alternatively, one may consider, rather than F , its elastic part in
Eq. [3.10], see e.g. (Rubin 2001 ; Einav 2012 ; Dafalias 2022). However, here
we disregard such a choice as we aim at developing a constitutive modeling
approach that is independent of the requirement of the decomposition of the
deformation gradient, or its rate of change, into an elastic and a plastic part.
It should also be mentioned that, for a given material, the free-energy function
is not unique for a given deformation gradient (for example, the free energy
values ψ and ψ + c, with c a constant, will give the same stress-strain response
and dissipation rate).
From Equation [3.10], it follows that

ψ̇ = ∂F ψ̂ : Ḟ + ∂T ψ̂ Ṫ + ∂zψ̂ · ż, [3.11]

where ∂F ψ̂ = ∂ψ̂
∂F . We continue by substituting expression [3.11] into the

Clausius-Duhem inequality [3.9], and obtain the following expression for the
internal dissipation rate

(P −∂F ψ̂) : Ḟ − (η +∂T ψ̂) Ṫ −∂zψ̂ (T,F ,z) · ż−d = 0, ∀ Ṫ , Ḟ , ż[3.12]
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with −∂zψ̂ (T,F ,z) being the thermodynamic forces. It follows that, for satis-
fying equality [3.12] for any Ṫ , Ḟ , ż, every admissible thermodynamic process
must satisfy the following constitutive restrictions, holding true at any time t,

P = ∂F ψ̂ (T,F ,z) , [3.13]

η = −∂T ψ̂ (T,F ,z) , [3.14]

d = −∂zψ̂ (T,F ,z) · ż ≥ 0. [3.15]

A last ingredient allows the closure of the constitutive relationship: the evolu-
tion equation for the internal variables, which based on [3.10] and [3.12-3.15]
takes the form

ż = f (T,F , z) [3.16]

such that the dissipation inequality [3.15] holds true. The above equation can
cover a wide variety of constitutive models, including rate-dependent and rate-
independent plasticity theory through the introduction of Lagrange multipliers,
see (Einav et al. 2007). Note that, in some particular cases, e.g. when postu-
lating the existence of a dissipation potential, analytical expressions for f that
satisfy the dissipation inequality by construction, can be retrieved (Maugin
and Muschik 1994 ; Einav et al. 2007). Similarly, evolution equations could be
formulated as Onsagerian conductivity equations satisfying the dissipation in-
equality, refer to (Gurtin 1996 ; Ván 2003 ; Einav and Liu 2018). Yet, the above
structure does not originate directly from thermodynamic considerations and
may not be general enough, as it requires ad-hoc assumptions on the form of the
internal variables rates and the thermodynamic forces. Thus, in the following,
we opt for the more general expression [3.16].

3.3.1.1. The quest for internal state variables

The aforementioned thermodynamics framework builds upon the knowledge of
the internal variables, z. And, whilst TANN can effectively leverage any a priori
identified set of internal variables (as we will see in the next paragraph), the
key question is: how can we identify internal state variables? Traditionally,
to determine the number and nature of internal variables, we must identify
the internal mechanisms and phenomena that influence the behavior of the
particular material at hand. This approach, referred to as the Art of modelling
(Maugin 2015), requires adaptation to each specific application and material
and is hardly scalable. To face this difficulty, there has been a recent interest
for devising approaches that automatically reveal – or discover – the internal
variables independent of the type of the material, see e.g. (Van et al. 2008 ;
Hernandez et al. 2021 ; Masi and Stefanou 2022).
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Herein, we adopt the approach developed in (Masi and Stefanou 2022),
where internal variables are identified based on the knowledge of the inter-
nal degrees of freedom of the microstructure of the material under investiga-
tion. To this end, we introduce a new quantity, referred to as internal coor-
dinates ξ. These internal coordinates describe the material behavior at the
microscopic scale7 and encompass variables such as displacement, velocity, mo-
mentum fields, and internal force networks.
According to this formalism, the identification of internal variables passes from
learning low-rank representations of the internal coordinates by identifying an
operator h, such that

z ≡ h(ξ) and ψ = ψ̂ (T,F ,z) . [3.17]

In parallel and without any loss of generality, a pseudoinverse operator g can
also be postulated, such that

ξ̃ = g (h (ξ)) = g (z) , [3.18]

where the superposed tilde serves to distinguish a low-rank approximation of
the internal coordinates from the internal coordinates themselves. To rephrase,
the adopted framework implies that the determination of the internal variables
boils down to identifying the operator h – and, additionally, the operator g
– from the knowledge of the microstructural internal degrees of freedom of a
material and without any a priori constitutive choice.8

3.3.2. Methodology

The thermodynamic framework presented above can be employed in the ar-
chitecture of neural networks to learn physical and generalizable constitutive
models. Such neural networks are referred to as Thermodynamics-based Artifi-
cial Neural Networks. TANN can be declined into two configurations, depending
whether the internal state variables are priori known (Masi et al. 2021) or not

7. Herein, we adopt the notion of microscopic scale as the finest scale of a material.
Depending on the degree of fidelity one desires to achieve, microscopic may refer,
for instance, to the scale of the grains composing a granular material or the atoms
composing each grain.
8. It is worth noticing that we only consider a finite number of internal variables.
Whilst this is the case for all constitutive models developed so far, one may question
whether the state space of a real, non-idealized, material can be proven to be finite
or not.

47



(Masi and Stefanou 2022). Both differential discrete-time and continuous-time
formulations can be employed (Masi and Stefanou 2023).

Herein, we briefly recall the main building blocks of the network (for more,
we refer to Masi and Stefanou 2023). TANN are composed of two building
blocks: the free energy density network and the evolution equation network.
The free energy network, shown in Figure 3.5, is responsible of the prediction of
the material stress, from the fulfilment (inductive bias) of the thermodynamics
restrictions [3.13-3.15]. It consists of one network trained to predict the value of
the free energy density – that is, ψ = ψ̂θ (T,F ,z), parametrized by the neural
networks parameters θ. Material stress, entropy, and internal dissipation rate
are computed, using the constitutive restrictions [3.13-3.15], by relying on the
automatic differentiation of the operator ψ̂θ with respect to its inputs. The free
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Figure 3.5: Thermodynamics block. All quantities refer at time t.

energy network is trained by minimizing a loss composed of three contributions,
and namely

Lenergy ≡ Lψ + L∇ψ + λregLreg, [3.19]

where λreg is a weighting parameter. The three terms ensure, respectively, that
(i) the neural network can predict the free energy density, (ii) the gradients
of the latter coincide with the material stresses, entropy density, and intrinsic
dissipation rate, and (iii) the fulfilment (in the form of a learning bias) of the
dissipation inequality, namely

Lψ ≡
ψ − ψ̂θ (T,F ,z)

 , [3.20a]

L∇ψ ≡
P − ∂F ψ̂θ (T,F ,z)

 +
η + ∂T ψ̂θ (T,F ,z)

 + [3.20b]
d + ∂zψ̂θ (T,F ,z) · ż

 , [3.20c]

Lreg ≡

h
∂zψ̂θ (T,F ,z) · ż

i , [3.20d]

with ∥ · ∥ being an error metric based on an arbitrary norm (cf. Chapter 2, vol.
I), averaged over all data points, and [ · ] being the Macaulay brackets. Note
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that the loss associated with the free energy density, Lψ, is not a necessary
condition for the fulfilment of the laws of thermodynamics and the accurate
prediction of the material response. The same holds true for the loss associated
with the dissipation rate, which can be omitted in those cases where there is
no information related to the values of the dissipation (cf. paragraph 3.3.3).
Indeed, it can be easily proved that, in absence of the aforementioned loss terms,
the free energy density network, trained only through its gradients, will still
respect the restrictions [3.13-3.15], because they are hardwired in the network
architecture.

The evolution equation network, shown in Figure 3.6, is responsible for
learning the evolution equations of the internal variables by means of a neu-
ral network fθ (T,F ,z). The training is performed by minimizing the error
between the outputs and the rates of change of the internal variables,

Lż = ∥ż − fθ (T,F ,z)∥ . [3.21]

The above evolution equation can be identified either relying on the aforemen-
tioned (time-continuous) formulation or, rather, by relying on a discrete-time,
incremental one.
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Figure 3.6: Evolution law block for a priori determined internal variables. All quantities
refer at time t.

3.3.2.1. Data-driven identification of internal variables

To the aforementioned building blocks, a third one adds whenever no constitu-
tive assumptions are made on the nature of the internal variables. At the heart
of the identification of the internal variables and their evolution equations lies
the search for an appropriate form of the functions g and h.9 Here, we identify
the latter as the neural networks of a standard autoencoder, being the operator
hθ(ξ) the encoder and the operator gθ(z) the decoder. In their simplest form,
autoencoders are unsupervised learning algorithms that map inputs to latent

9. We implicitly assume the existence of such functions, but this might not be always
the case (see differential inclusions.
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representations of minimum dimensionality and then back to themselves. Given
an input ξ ∈ ℝn, we want to learn a latent representation z ∈ ℝl – where l ≪ n
– which is mapped back into ξ̃ ∈ ℝn by minimizing ∥ξ − ξ̃∥. This parametriza-
tion is implemented by two functions: an encoder that maps ξ into ℝl and a
decoder that performs the opposite transformation.
While autoencoders allow the reconstruction of the internal coordinates and
their rates, a full reconstruction may not be needed to characterize the mate-
rial response (see paragraph 3.3.3). Alternatively, one may prefer other dimen-
sionality reduction techniques, e.g. principal component analysis, among others
(Géron 2019 ; Piunno et al. 2022). The proposed approach is general and in-
dependent on the particular choice made to identify the latent representations
of the internal coordinates.

Figure 3.7 shows the architecture for the data-driven identification of the
internal variables and evolution equations. The architecture is composed of an
autoencoder, the free energy density network, and the evolution equation net-
work. The identification of the internal variables is driven by the minimization

encode
decode

evolution equations

free energy density
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Figure 3.7: Evolution TANN for the data-driven identification of internal variables and
governing equations. All quantities refer at time t. The internal variables are identified
as the latent representations of the encoder, i.e., z ≡ hθ (ξ). The internal variables
rate can be computed either in terms of finite-difference or by means of the automatic
differentiation of the encoder with respect to the internal coordinates, i.e. ż = ∂ξhθ(ξ)·ξ̇.

of the reconstruction loss,

Lrecon = ∥ξ − gθ (hθ (ξ))∥ , [3.22]
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which ensures that the autoencoder can reconstruct the internal coordinates
from the latent representations. Note that, at the end of the training, these
latent representations, hθ (ξ), will coincide with the internal variables, i.e.,
z ≡ hθ (ξ). The identification of the evolution equations follows depending on
whether a discrete- or continuous-time formulation is adopted, see (Masi and
Stefanou 2023).

It is worth noticing that, the training of the networks composing TANN
can also be performed individually. In this case, the autoencoder and the free
energy density network can be first trained together, by minimization of the
weighted sum of the losses Lrecon, Lψ, L∇ψ, and Lreg, then, the evolution equa-
tion network is trained by minimization of the loss Lż.

3.3.2.2. Inference

After having trained TANN, they can be used at inference as classical constitu-
tive models that can further be deployed in displacement-based formulations,
where loading paths are expressed in terms of strain and temperature loads,
i.e.

P (t) = TANNθ

�
T (t),F (t), z(t)

�
∀ t, [3.23]

where the time evolution of the internal variables is computed by solving the
following initial value problem

ż(t) = fθ

�
T (t),F (t), z(t)

�
, z(t0) = z0. [3.24]

The latter equation can be solved using the artillery of well-known and studied
numerical integration methods. Additionally, an alternative path consists of
directly learning the integral form of the evolution equations (Masi and Einav
2024).

It is also worth noticing that, in the case where one opts for a stress-based
formulation, the proposed approach and formalism of TANN can still be used,
but selecting the Gibbs free energy density instead of the Helmholtz free energy
density.

For the case of a priori selected internal variables, only the evolution equa-
tion and free energy networks are needed. Instead, in the case where the internal
variables are discovered, these are conclusively identified as the latent represen-
tations of the encoder, which is then removed completely from the architecture.
However, the decoder may be kept to map z back to the internal coordinates,
i.e. ξ̃(t) = gθ (z(t)), if the particular application at hands requires it.
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In summary, TANN enable robust predictions of material responses, even for
unseen data and in the presence of noise, thanks to the hardwiring of thermody-
namic principles. Extensive studies on the benefits of a thermodynamics-based
approach against a purely data-driven one can be found in (Masi et al. 2021).
For the wide applicability of the framework, we refer to (Masi and Stefanou
2023) where TANN are demonstrated to accurately model a broad spectrum
of complex material behaviors, from plasticity to damage and viscosity (and
combination of them).

3.3.3. Digital twins of granular materials: a pedagogic example

Let us investigate, in the form of an example, how the framework of
thermodynamics-based neural networks can be used to build high-fidelity
thermodynamics-based digital twins of a granular system. To this end, we
rely on high-fidelity replicas of the latter (i.e., a virtual twin) to generate
virtual experiments that will be used in the learning process.

3.3.3.1. Virtual twin

The reference granular material is modeled by infinitely rigid, spherical dis-
crete particles, relying on the Discrete Element Method (DEM). The particles
interact with each others through inter-particle constitutive laws of friction
and their motion is governed by Newton second law of motion. The numeri-
cal analyses are conducted using the open-source platform YADE-Open DEM
(Kozicki and Donze 2008 ; Smilauer et al. 2021) where the equations of motion
are integrated in time explicitly, using a central finite difference approximation
algorithm.

Herein, we consider a purely frictional (cohesionless) granular medium,
where the grains interact with each other through normal and tangential forces.
The grains have a mean diameter d50 = 200 µm, drawn from a uniform distri-
bution d50 U(1 − 0.0707, 1 + 0.0707), and are composed of an isotropic elastic
material with density ρ = 1800 kg/m3, Young modulus E = 300 MPa, and
poisson ratio ν = 0.3. The grains interact through Coulomb friction interfaces,
with friction angle φ = 30◦.

The granular packing is first subjected to consolidation to match
prescribed stress conditions and then undergoes monotonous and cyclic
drained triaxial compression. Accordingly, we first generate a periodic
specimen by randomly depositing spherical particles. At the beginning, the
material is prescribed with a frictional angle equal to 0◦ in order to obtain an
ultimate dense packing. We proceed with an isotropic compaction of the
packing to achieve a dense state and a consolidation to reach the desired
homogeneous volumetric stress level, p = 100 kPa, and zero deviatoric stress,
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q = 0 kPa. The former is defined as p = 1
3 σii, while the latter as the invariant

of the deviatoric stress tensor, σ′
ij = σij − p, namely q =

√
2σ′

ijσ′
ij – with

i, j = 1, 2, 3.
The final material properties are then assigned to the particles, along with
their existing interactions. At this point, the packing is subjected to isotropic
extension to generate states at different confining pressures, i.e.,
p ∈ (20, 40, 60, 80, 100) kPa.

3.3.3.1.1. Virtual experiments

Using the consolidated granular packing obtained following the aforementioned
protocol, we perform virtual experimental tests to generate data necessary for
training, validation, and testing of TANN, and namely:

– five monotonous drained triaxial compression tests with initial confining
pressures p ∈ (20, 40, 60, 80, 100) kPa up to a total axial deformation approxi-
mately equal to 20%, with constant strain rate equal to 125 s-1;

– ten cyclic drained triaxial compression tests with initial confining pressure
equal to 100 kPa, where the strain rates are assumed piecewise constant, in
time, equal to ±125 s-1 and of random direction.

To simulate these conditions, we implement the model by setting ε̇11 and deter-
mining, through a servo-controller, ε̇v = ε̇ii at each timestep to satisfy ṗ = q̇/3,
see Figure 3.8.
The inertia number I = γ̇d50

√
ρ/pc, with γ̇ the shearing rate, is approxima-

tively equal to 10−5 in all tests. Accordingly, the material is in a quasi-static
regime, with negligible strain-rate effects (MiDi 2004 ; Radjai and Dubois 2011).

3.3.3.1.2. Stochastic representation

Granular systems are characterized by inherent spatial heterogeneity of the
material properties and of the microstructure topology. As a result, the deter-
mination of the size of a representative volume element is not trivial due to the
subsequent topological randomness, see (Nguyen 2021 ; Stroeven et al. 2004).
An alternative way consists of resorting to statistical ensemble approaches that
leverage stochastic elementary volumes (Ostoja-Starzewski 2006), containing a
sufficient number of particles to be representative and having characteristic size
exceeding that of individual grains. Following this framework, analyses based
on the stochastic interpretation of multiple small, periodic stochastic elemen-
tary volumes, of characteristic size l, lead, after averaging, to the identification
of the representative volume element, with characteristic size L, see Figure 3.8
and (Papachristos et al. 2023). To determine the number of stochastic elemen-
tary volumes necessary for an adequate description of the material response,
Monte-Carlo analyses must be performed, cf. (Papachristos et al. 2023).
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Figure 3.8: (re-adapted from (Papachristos et al. 2023)) The material behavior of a
granular system in terms of the representative elementary volume of size L, approximated
by a stochastic ensemble of a series of N stochastic elementary volumes of size l, at the
level of the microstructure.

Herein, we shall limit ourselves to only four different volumes, with size
l ≈ 8d50, composed of 210 particles – the number of particles is kept at minimum
in order to generate data in a short amount of time. The number of stochastic
elementary volumes is obviously not enough for having realist representations of
the heterogeneous nature of granular systems (as Monte-Carlo analyses would
reveal). Yet, the statistical average of the four responses of the DEM models
leads to a smooth material behavior, see Figure 3.9, not dominated by local
stick-slip motion (Papachristos et al. 2023) and representative enough of the
response of a granular system within the limits of this pedagogic example.

3.3.3.2. Digital twin

Relying on the aforementioned generated virtual experiments, we proceed with
the training of a digital twin based on TANN, using a discrete-time formulation
(cf. Masi and Stefanou 2022). In particular, we select as test set one monotonous
(at initial confining pressure p = 80 kPa) and one cyclic path, from those
previously generated. The remaining data are shuffled and split into training
and validation set.

The internal coordinates are selected to be the three-dimensional displace-
ment fields of all grains composing the system (averaged over the stochastic
elementary volumes). The free energy density network consists of one hidden
layer with GELU activations. The evolution equation network has three hid-
den layers with GELU activations. While the encoder and decoder networks
are composed of two hidden layers and RELU activations.
The learning process is split in two phases. First, the energy network and the
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Figure 3.9: Monotonous and cyclic drained triaxial compression response (a), (b) of each
individual stochastic elementary volume and averaged, where εs is the invariant of the
deviatoric strain tensor, ε′

ij = εij − εv
3 , namely εs =

√
1
2 ε′

ijε′
ij . (c) Spatial distribution

of the grains diameter in each stochastic volume (d50 = 0.2 mm).

autoencoder are trained by minimizing the reconstruction error [3.22], the er-
ror on the stress predictions, i.e., ∥σ − ∂εψ̂θ (ε,h(ξ))∥, and the dissipation
inequality, rather than the total loss function [3.19]. Such a choice is made to
mimic real case scenarios where the energy and dissipation rate values might
not be readily available. Second, after having identified the internal variables,
according to Eq. [3.17], we proceed by training the evolution equation network.

It is worth mentioning that the number of internal variables necessary for an
accurate reconstruction of the internal coordinates – i.e., the microscopic dis-
placement fields – and the description of the evolution of the material stresses
is not a priori known. To this end, we set the number of hidden dimensions
(output of the encoder) equal to 26 and use an activity regularization based on
the ℓ1 norm to have an accurate low-rank reconstruction ξ̃ with the smallest
number of hidden variables. By doing so, we find that the autoencoder can
accurately reconstruct the internal coordinate fields with only seven (non-zero)
hidden variables – that is, compressing the information of the three-dimensional
displacement fields of 210 particles by a factor of approximately 440 (3210/7).
Despite such compression, we should note that not all the so-determined hid-
den variables may be needed for characterizing the material response. Thus,
we introduce, in parallel, a penalty based on the ℓ1 norm for the weights of
input layer of the free energy network (cf. Chapter 2, vol. I). This allows to
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promote parsimony and identify only those (internal) variables that are effec-
tively needed for predicting the material response. In so doing, we find that
only four internal variables are necessary for the stress paths probed in this
example.

3.3.3.3. Results

We show in Figure 3.10 the evolution of the volume average behavior of the
reference granular material and the predictions, at inference, of TANN, for
both the monotonous and the cyclic unseen path. The digital twin is found to
accurately describe the complex material behavior, correctly accounting for the
underlying inelastic phenomena and yielding an accurate representation of the
dissipative nature of the system, subjected to multiple loading and unloading.

Particularly interesting is to observe the evolution of the discovered internal
variables, shown in Figure 3.11, for the same monotonous and cyclic test paths.
There exist two essentially different behaviors. The first two internal variables
are mainly responsible for the description of the irreversible phenomena taking
place before the stress peak, see Figure 3.11(b,e). This is particularly evident
for the monotonous path (b), where the variables rapidly evolve until they reach
an equilibrium state (post-peak). A similar behavior is also found for the cyclic
path (e), where the multiple unloading and (re)loading repeatedly perturb the
equilibrium state. The remaining two internal variables, whose evolution is de-
picted in Figure 3.11(c,f), display a behavior essentially different from that of
the former as they continuously evolve, both in loading and unloading, suggest-
ing that they may represent a macroscopic measure of dissipation mechanisms
taking place at the frictional inter-particle contacts. Note that the physical na-
ture of the discovered internal state variables can be examined though feature
extraction methods (Lu et al. 2020).

Additionally, internal variables can be decoded to obtain the internal coor-
dinates of the microstructure – the displacement fields of the grains. To demon-
strate the full capabilities of TANN, we show such reconstruction in Figure 3.12
for the monotonous test set. The three-dimensional reconstruction of the gran-
ular packing in Figure 3.12(a) is made by using the predicted particles displace-
ments (and accounting for the diameter distribution and initial grains position
of one of the four stochastic elementary volumes). Figure 3.12(b) additionally
compares the reference and predicted time evolution of the displacements of
some of the grains. The framework allows to deliver accurate descriptions of
the material microstructure. Note, again, that the proposed approach does not
require to operate (on-the-fly) with the high-dimensional microscopic fields,
but only with the identified hidden variables.
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Figure 3.10: Comparison of the predictions of TANN with respect to unseen, test re-
sponses obtained from the statistical average of four granular stochastic elementary vol-
umes: monotonous drained triaxial (DT, left) and cyclic (right). (a), (c) q − εs response
and (b), (d) p − q response. For the monotonous path, we show both the training and
validation sets (train), and test (test) set.

3.3.4. Speed-up multiscale simulations

We have seen so far how TANN can be deployed to construct reliable and ac-
curate digital twins of complex and intricate materials, thanks to the universal
approximation power provided by neural networks and the rigorous theoreti-
cal setting offered by thermodynamics. In addition, the same framework can
be used to speed-up, in a reliable manner, fine-scale simulations, relying on a
multiscale approach.

Multiscale approaches integrate a number of nested computational methods
at various scales, such as the Finite Element Method (FEM) and the Discrete
Element Method (DEM), to obtain iterative solutions to boundary value prob-
lems at the unit cell of the microstructure (auxiliary problem) and, through
upscaling, retrieve the effective macroscopic response (Feyel 2003 ; Nitka et al.
2011 ; Nguyen et al. 2014).
To fix the ideas, let us consider a large scale, macroscopic structure, whose
microstructure is made of spatially (quasi-)periodic distributions of a represen-
tative unit cell V. We leverage scale separation, i.e., we assume the existence
of two independent scales x and y = x/ϵ, with ϵ ≪ 1 being the dimension
of the unit cell. The first scale, x, is associated to the macroscale, while y
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Figure 3.11: Evolution of the discovered internal variables for the test monotonous (left)
and cyclic (right) loading paths: (a,d) reference deviatoric stress path, and (b-c,e-f)
discovered internal state variables.

refers to the scale of the material microstructure. Under such considerations,
we can resort to the rigorous mathematical framework of asymptotic homoge-
nization (Bakhvalov and Panasenko 2012) for scales bridging and, in particular,
by leveraging its extension to nonlinear problems by means of an incremental
formulation, see (Miehe 2002).
Note that whenever the assumption of scale separation does not hold, for in-
stance, in presence of strain localization phenomena, homogenization cannot
be used. However, a remedy consists of resorting to higher order continuum
theories (see Stefanou et al. 2010 ; Godio et al. 2017 ; Vardoulakis 2018, among
others).

According to asymptotic homogenization, TANN should be trained to iden-
tify the volume average behavior of the unit cell – that is, predict the solution
of the auxiliary problem. At this point, we should note that the previous exam-
ple already considers training data sets related to the unit cell (of a granular
material) with periodic boundary conditions. Thus, the network can be di-
rectly used at inference to perform multiscale analyses. In so doing, we rely
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Figure 3.12: Internal coordinates (particles displacements) from the DEM simulations
and as reconstructed from the set of discovered internal variables. (a) Reconstruction for
one of the stochastic volume of the granular packing from the knowledge of the displace-
ment fields, radii distribution, and initial position. (b) Comparison of the time evolution
of (some of) the grains displacements and the predictions obtained by integrating in time
the evolution equation, fθ( · ), and decoding the internal variables, gθ( · ).

on the FEM×TANN approach, as developed in (Masi and Stefanou 2022). In
FEM×TANN, we perform Finite Element analyses by a straightforward re-
placement of classical constitutive models, at the Gauss points, with the dig-
ital twin provided by the trained network (cf. asymptotic homogenization).
The tangent matrix is computed, at each Gauss integration point, by virtue
of the automatic differentiation of TANN, cf. Chapter 5, vol. I. For a detailed
discussion on the computational accelerations available with the FEM×TANN
approach, we refer to (Masi and Stefanou 2022).

3.3.4.1. FEM×TANN: an example

To fix the ideas, let us consider the problem of a panel, fixed on one end, and
subjected, quasi-statically, to a shearing load at the other end. Figure 3.13(a)
depicts the initial geometry and boundary conditions. Plane strain conditions
are adopted.
Initially, a force equal to 12 N/mm (per unit cell in width) is applied linearly
in time until tload = 0.9 ms. The loading time is selected in order to have strain
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rates of the order of 1 s−1, corresponding to those developed due to impact
loading. The force is then maintained over a prescribed time interval, up to
tsteady, and, finally, the structure is unloaded gradually within a time interval
equal to that of the loading phase, see Figure 3.13(e). To capture relaxation
effects due to the viscous behavior of the microstructure, the unloaded phase
is maintained for an additional time interval, up to trel.

Here, the microstructure is not that of a granular material, but rather the
one of an elasto-plastic lattice material whose microstructure is made of bars
with an elasto-viscoplastic behavior and isotropic hardening (with Perzyna-
type viscosity), see Figure 3.13(b). The material has the following properties
K = 167 GPa, G = 77 GPa, c = 100 MPa, H = 10 MPa and µ = 25 s, where
K and G are the bulk and the shear modulus, c is the material strength in
simple shear, H the hardening modulus, and µ the viscosity parameter. The
microstructural bars have a constant circular cross-section equal to 1 mm2.
Following the procedure detailed in (Masi and Stefanou 2023), the digital twin
of the lattice cell is built using TANN, trained over randomly generated strain-
driven paths applied in the form of periodic boundary conditions. In total,
33 internal variables are identified from the microscopic total and inelastic
deformation fields.

As it follows, we investigate and compare the solutions obtained from the
(exact) micromechanical model with those from the homogenized one, relying
on TANN. For the homogenized case, we consider a FE model consisting of 80
linear tetrahedral elements in length and 8 in height (with crossed diagonals)
– the number of elements was determined by mesh convergence analyses.

First, we restrict the analysis exclusively to the loading phase and verify that
the micromechanical solution converges to the homogenized one, for ϵ tending
to zero, as expected from asymptotic homogenization (Miehe 2002). To this
end, we compare the results of the micromechanical model, with different sizes
of the unit-cell ϵ, with those obtained with the FEM×TANN approach. Figure
3.14(a,b) depicts the total energy and dissipation rate in function of ϵ. For
1/ϵ ≥ 6, the maximum relative error is as low as 1.7% (in energy) and 2.3%
(in dissipation). The convergence of the response of the homogenized model to
the response of the micromechanical simulations is achieved at ϵ = 0.1 (with
an error approximately equal to 0.5%).

Then, we continue by considering the full time scale of the analysis and select
the microscopic model with ϵ = 0.1 as the reference solution. Figure 3.13(c,d)
depicts the deformed shapes of the micromechanical and homogenized models
(magnified by a factor of 10), at the end of the steady phase. Contours of the
free energy density in the homogenized model identify the areas where high
stresses develop.
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Figure 3.13: Multiscale problem: (a) homogenized and micromechanical model of a
panel, with length 10 mm and height 2 mm, under plan strain conditions, subjected to a
shearing load and (b) force-displacement response of the micromechanical (ϵ = 0.1) and
the FEM×TANN model.

As far as it concerns the kinematics of the problem, we compare, in Figure
3.14(c), the force-displacement response of the homogenized model with the
micromechanical reference solution. For the former, we consider the (zeroth-
order) approximation of the displacements, while for the latter, the microscopic
displacements at the nodes are considered as reference. A good agreement be-
tween the two models is observed. During the steady phase, the material dis-
plays viscous effects that alter the displacements and deformation fields. This is
captured by the homogenized model with a relative error in the displacement of
0.25%. In addition, the model correctly predicts the residual (non-zero) vertical
displacement, cf. Figure 3.14(c).

In parallel, TANN enable the characterization of microscopic fields, specif-
ically the internal coordinates ξ, within the homogenized model, known as
localization in asymptotic homogenization (not to be confused with strain lo-
calization). Unlike the classical procedure (Pinho-da Cruz et al. 2009), the
proposed approach allows straightforward reconstruction of microscopic fields
by decoding the internal variables. Figure 3.15 compares the microscopic de-
formations at the intrados of the panel in the micromechanical model (ϵ = 0.1)
with those obtained from the decoding of the internal variables. An excellent
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Figure 3.14: Total energy (a) and dissipation rate (b) of the micromechanical (ref) and
homogenized (FEM×TANN) models (t = tload), at varying of the unit cell size, ϵ.
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Figure 3.15: Microscopic deformations (total and inelastic) at the intrados of the panel at
the end of the loading, steady, and unloading plus relaxation phase. In the micromechanical
model (ϵ = 0.1), the microscopic deformations are computed from the deformations of
the bars with axis parallel to the intrados. In the homogenized model, the microscopic
deformations are obtained from the decoding of the identified internal variables at the
Gauss points (no interpolation).

agreement is observed. The FEM×TANN approach accurately captures defor-
mation redistribution during the steady phase caused by viscosity. Additionally,
it provides not only overall agreement with the micromechanical solution for
microscopic inelastic deformations but also precise prediction of the plastic re-
gion location.
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Furthermore, the proposed method successfully captures complex microme-
chanical mechanisms, such as the phenomenon of trapped, locked elastic energy.
At the end of the unloading phase, the inelastic deformation exceeds the total
microscopic deformation (cf. Figure 3.15). Elastic deformations remain trapped
within the plastified region of the structure, from the clamped end to the end
of the plastic region (x ∈ [−5, 1.625] mm), persisting even without external
force. Conversely, for x > 1.625 mm, total and inelastic deformations are zero,
and elastic deformations vanish during unloading.

It is worth noticing that predictions near the fixed end (x = −5 mm) of
the panel exhibit minor differences compared to the micromechanical solu-
tion due to high strain gradients with wavelengths comparable to the unit cell
size. Remedies for these boundary layer effects exist (see e.g. (Bakhvalov and
Panasenko 2012)). Nonetheless, despite the limitations of first-order asymp-
totic homogenization theory, the FEM×TANN approach yields excellent results
compared to the micromechanical problem and holds potential for higher-order
homogenization schemes.

3.4. Conclusions

Deep learning and, in general, data-intensive (or data-centric) approaches have
the potential of revolutionizing the way we perceive models in physics and in
mechanics. However, a purely data-centric vision is intrinsically hindered by
poor generalization and interpretability of the consequent discovered models.
Particularly inspiring, in recent years, has been the possibility of hardwiring
(in soft and hard ways) first principles into deep learning algorithms and learn
interpretable, robust, and high-fidelity models that respect the inherent physics
(Karniadakis et al. 2021 ; Hernandez et al. 2021 ; Masi et al. 2021 ; Klein et al.
2022 ; Cueto and Chinesta 2022).

In this Chapter, we presented two emblematic methodologies, namely
Physics-Informed Neural Networks (PINN) and Thermodynamics-based
Artificial Neural Networks (TANN). The former enable accounting for
physical laws in the solution and discovery of partial different equations, from
data. Physical knowledge is introduced though ad-hoc learning biases that
consists in the minimization of a loss function related to the residual of the
underlying governing equations. The latter consist, instead, of hardwiring the
first and second laws of thermodynamics (i.e., energy and entropy balance)
within the architecture of neural networks, via inductive and learning biases,
to discover constitutive equations of complex materials, from data.

Relying on an hands-on example, we draw an interesting analogy between
the integration of physics into deep learning algorithms and regularization tech-
niques (based on ℓ1 and ℓ2 norms) promoting parsimony and model simplicity
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(see paragraph 3.2.2). Then, we demonstrated the possibility of identifying
high-fidelity and interpretable digital replicas of complex granular materials
relying on the framework of thermodynamics-based neural networks (para-
graph 3.3.3). The latter not only capture the average material behavior but
also allow to uncover the (hidden) internal state variables and efficiently track
the microstructure evolution at reduced computational cost. Finally, the same
approach can be deployed to accelerate computationally intensive multiscale
simulations, herein exemplified by means of an application to lattice structures
(paragraph 3.3.4). The aforementioned examples and applications demonstrate
the underlying idea of TANN in learning the constitutive behavior of intri-
cate materials and achieving rapid predictions at inference, thus allowing for
massive accelerations of multiscale simulations. For instance, with reference to
the example involving granular materials, it was observed that the computa-
tional time required by TANN to forecast the material response under a cyclic
drained triaxial compression test was roughly three orders of magnitude lower
compared to the extensive fine-scale simulations carried out using the discrete
element method, specifically 1200/0.8 s/s.

In conclusion, the combination of physical principles with data-centric mod-
els offers a pathway to predict and describe, with high-accuracy, the complex
response of intricate systems. Yet, some challenges remain to be addressed.
Indeed, in mechanics, we are most of the times faced, rather than with vast
amounts of data (big data), with very limited volumes of measurements (small
data), characterized by an inherent heterogeneity and noise. Particular inter-
esting is the development of physics-based deep learning algorithms that can
address such a problem and deliver robust predictive models able to operate
with reduced/partial information (refer to Masi and Einav 2024).
In addition, machine learning approaches can be employed to automatically de-
termine meaningful variables of the system at hands and discover novel formula-
tions, as we have seen in the example involving granular media (cf. paragraph
3.3.3). The same approach, driving the discovery of hidden latent (internal)
variables, could be extended to address open challenges related to the choice
of the descriptors of the state space of complex materials or any other physical
system.
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